These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 36252671)
1. Soil nitrogen substances and denitrifying communities regulate the anaerobic oxidation of methane in wetlands of Yellow River Delta, China. Wang Z; Li K; Shen X; Yan F; Zhao X; Xin Y; Ji L; Xiang Q; Xu X; Li D; Ran J; Xu X; Chen Q Sci Total Environ; 2023 Jan; 857(Pt 2):159439. PubMed ID: 36252671 [TBL] [Abstract][Full Text] [Related]
2. Soil nitrogen content and key functional microorganisms influence the response of wetland anaerobic oxidation of methane to trivalent iron input. Wang Z; Li K; Yan F; Xiang Q; Zhao X; Ji L; Xin Y; Sun J; Liu C; Xu X; Zhang Y; Shen X; Xu X; Chen Q Chemosphere; 2023 May; 322():138183. PubMed ID: 36828110 [TBL] [Abstract][Full Text] [Related]
3. Coupling of soil methane emissions at different depths under typical coastal wetland vegetation types. Li K; Wang Z; Xiang Q; Zhao X; Ji L; Xin Y; Sun J; Liu C; Shen X; Xu X; Chen Q Chemosphere; 2023 Oct; 338():139505. PubMed ID: 37454988 [TBL] [Abstract][Full Text] [Related]
4. Anaerobic Methane Oxidation Driven by Microbial Reduction of Natural Organic Matter in a Tropical Wetland. Valenzuela EI; Prieto-Davó A; López-Lozano NE; Hernández-Eligio A; Vega-Alvarado L; Juárez K; García-González AS; López MG; Cervantes FJ Appl Environ Microbiol; 2017 Jun; 83(11):. PubMed ID: 28341676 [TBL] [Abstract][Full Text] [Related]
5. Anaerobic oxidation of methane in terrestrial wetlands: The rate, identity and metabolism. Zhao Q; Lu Y Sci Total Environ; 2023 Dec; 902():166049. PubMed ID: 37543312 [TBL] [Abstract][Full Text] [Related]
6. Denitrifying anaerobic methane oxidation and mechanisms influencing it in Yellow River Delta coastal wetland soil, China. Wang Z; Li J; Xu X; Li K; Chen Q Chemosphere; 2022 Jul; 298():134345. PubMed ID: 35307384 [TBL] [Abstract][Full Text] [Related]
7. Role and regulation of anaerobic methane oxidation catalyzed by NC10 bacteria and ANME-2d archaea in various ecosystems. Yang WT; Shen LD; Bai YN Environ Res; 2023 Feb; 219():115174. PubMed ID: 36584837 [TBL] [Abstract][Full Text] [Related]
8. Spatial-Temporal Pattern of Sulfate-Dependent Anaerobic Methane Oxidation in an Intertidal Zone of the East China Sea. Wang J; Hua M; Cai C; Hu J; Wang J; Yang H; Ma F; Qian H; Zheng P; Hu B Appl Environ Microbiol; 2019 Apr; 85(7):. PubMed ID: 30709818 [TBL] [Abstract][Full Text] [Related]
9. Anaerobic oxidation of methane driven by different electron acceptors: A review. Zhao Y; Liu Y; Cao S; Hao Q; Liu C; Li Y Sci Total Environ; 2024 Oct; 946():174287. PubMed ID: 38945238 [TBL] [Abstract][Full Text] [Related]
10. The anaerobic oxidation of methane in paddy soil by ferric iron and nitrate, and the microbial communities involved. Luo D; Meng X; Zheng N; Li Y; Yao H; Chapman SJ Sci Total Environ; 2021 Sep; 788():147773. PubMed ID: 34029806 [TBL] [Abstract][Full Text] [Related]
11. Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). Conrad R Microbiol Rev; 1996 Dec; 60(4):609-40. PubMed ID: 8987358 [TBL] [Abstract][Full Text] [Related]
12. Metabolic potential of anaerobic methane oxidizing archaea for a broad spectrum of electron acceptors. Glodowska M; Welte CU; Kurth JM Adv Microb Physiol; 2022; 80():157-201. PubMed ID: 35489791 [TBL] [Abstract][Full Text] [Related]
13. Equal importance of humic acids and nitrate in driving anaerobic oxidation of methane in paddy soils. Bai Y; Wang Y; Shen L; Shang B; Ji Y; Ren B; Yang W; Yang Y; Ma Z; Feng Z Sci Total Environ; 2024 Feb; 912():169311. PubMed ID: 38103608 [TBL] [Abstract][Full Text] [Related]
14. Evidence for the anaerobic oxidation of methane coupled to nitrous oxide reduction in landfill cover soils: Promotor and inhibitor. Xu S; Zhang X; Zhu Y Sci Total Environ; 2023 Nov; 900():166752. PubMed ID: 37659572 [TBL] [Abstract][Full Text] [Related]
15. Sulfate concentrations affect sulfate reduction pathways and methane consumption in coastal wetlands. La W; Han X; Liu CQ; Ding H; Liu M; Sun F; Li S; Lang Y Water Res; 2022 Jun; 217():118441. PubMed ID: 35430469 [TBL] [Abstract][Full Text] [Related]
16. Niche differentiation of denitrifying anaerobic methane oxidizing bacteria and archaea leads to effective methane filtration in a Tibetan alpine wetland. Xie F; Ma A; Zhou H; Liang Y; Yin J; Ma K; Zhuang X; Zhuang G Environ Int; 2020 Jul; 140():105764. PubMed ID: 32371309 [TBL] [Abstract][Full Text] [Related]
17. Depth-specific distribution and significance of nitrite-dependent anaerobic methane oxidation process in tidal flow constructed wetlands used for treating river water. Zhang M; Huang JC; Sun S; Rehman MMU; He S Sci Total Environ; 2020 May; 716():137054. PubMed ID: 32036140 [TBL] [Abstract][Full Text] [Related]
18. Continuous anaerobic oxidation of methane: Impact of semi-continuous liquid operation and nitrate load on N Valenzuela EI; Ortiz-Zúñiga MF; Carrillo-Reyes J; Moreno-Andrade I; Quijano G Chemosphere; 2021 Sep; 278():130441. PubMed ID: 33838410 [TBL] [Abstract][Full Text] [Related]
19. Nitrogen input promotes denitrifying methanotrophs' abundance and contribution to methane emission reduction in coastal wetland and paddy soil. Wang J; Yao X; Jia Z; Zhu L; Zheng P; Kartal B; Hu B Environ Pollut; 2022 Jun; 302():119090. PubMed ID: 35240269 [TBL] [Abstract][Full Text] [Related]
20. Effects and mechanisms of land-types conversion on greenhouse gas emissions in the Yellow River floodplain wetland. Lin Q; Wang S; Li Y; Riaz L; Yu F; Yang Q; Han S; Ma J Sci Total Environ; 2022 Mar; 813():152406. PubMed ID: 34921878 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]