These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 36252673)
1. Effect of indoor temperature on the velocity fields and airborne transmission of sneeze droplets: An experimental study and transient CFD modeling. Bahramian A; Mohammadi M; Ahmadi G Sci Total Environ; 2023 Feb; 858(Pt 2):159444. PubMed ID: 36252673 [TBL] [Abstract][Full Text] [Related]
2. Influence of indoor environmental conditions on airborne transmission and lifetime of sneeze droplets in a confined space: a way to reduce COVID-19 spread. Bahramian A Environ Sci Pollut Res Int; 2023 Mar; 30(15):44067-44085. PubMed ID: 36680724 [TBL] [Abstract][Full Text] [Related]
3. Numerical investigation on indoor environment decontamination after sneezing. Kumar S; King MD Environ Res; 2022 Oct; 213():113665. PubMed ID: 35714690 [TBL] [Abstract][Full Text] [Related]
4. Dispersion of sneeze droplets in a meat facility indoor environment - Without partitions. Kumar S; Klassen M; Klassen D; Hardin R; King MD Environ Res; 2023 Nov; 236(Pt 1):116603. PubMed ID: 37454802 [TBL] [Abstract][Full Text] [Related]
5. Quantitative Microbial Risk Assessment for Airborne Transmission of SARS-CoV-2 via Breathing, Speaking, Singing, Coughing, and Sneezing. Schijven J; Vermeulen LC; Swart A; Meijer A; Duizer E; de Roda Husman AM Environ Health Perspect; 2021 Apr; 129(4):47002. PubMed ID: 33793301 [TBL] [Abstract][Full Text] [Related]
6. The effect of natural ventilation on airborne transmission of the COVID-19 virus spread by sneezing in the classroom. Firatoglu ZA Sci Total Environ; 2023 Oct; 896():165113. PubMed ID: 37391140 [TBL] [Abstract][Full Text] [Related]
7. Numerical modeling of sneeze airflow and its validation with an experimental dataset. Oh W; Ooka R; Kikumoto H; Han M Indoor Air; 2022 Nov; 32(11):e13171. PubMed ID: 36437664 [TBL] [Abstract][Full Text] [Related]
8. Physiology to Disease Transmission of Respiratory Tract Infection: A Narrative Review. Singh NK; Kumar N; Singh AK Infect Disord Drug Targets; 2021; 21(6):e170721188930. PubMed ID: 33297921 [TBL] [Abstract][Full Text] [Related]
9. Analytic modeling and risk assessment of aerial transmission of SARS-CoV-2 virus through vaping expirations in shared micro-environments. Sussman RA; Golberstein E; Polosa R Environ Sci Pollut Res Int; 2022 Nov; 29(55):83020-83044. PubMed ID: 35754079 [TBL] [Abstract][Full Text] [Related]
10. Air cleaning technologies: an evidence-based analysis. Medical Advisory Secretariat Ont Health Technol Assess Ser; 2005; 5(17):1-52. PubMed ID: 23074468 [TBL] [Abstract][Full Text] [Related]
11. Corrigendum to "Effect of indoor temperature on the velocity fields and airborne transmission of sneeze droplets: An experimental study and transient CFD modeling" [Sci. Total Environ. 858 (2023) 159444]. Bahramian A; Mohammadi M; Ahmadi G Sci Total Environ; 2023 Aug; 885():163704. PubMed ID: 37163957 [No Abstract] [Full Text] [Related]
12. Corrigendum to: "Effect of indoor temperature on the velocity fields and airborne transmission of sneeze droplets: An experimental study and transient CFD modeling" [Sci. Total Environ. 858 (2023) 159444]. Bahramian A; Mohammadi M; Ahmadi G Sci Total Environ; 2023 Jul; 883():163618. PubMed ID: 37126980 [No Abstract] [Full Text] [Related]
13. Large eddy simulation of sneeze plumes and particles in a poorly ventilated outdoor air condition: A case study of the University of Houston main campus. Zanganeh Kia H; Choi Y; Nelson D; Park J; Pouyaei A Sci Total Environ; 2023 Sep; 891():164694. PubMed ID: 37290661 [TBL] [Abstract][Full Text] [Related]
14. Understanding Transmission Dynamics of COVID-19-Type Infections by Direct Numerical Simulations of Cough/Sneeze Flows. Diwan SS; Ravichandran S; Govindarajan R; Narasimha R Trans Indian Natl Acad Eng; 2020; 5(2):255-261. PubMed ID: 38624374 [TBL] [Abstract][Full Text] [Related]
15. Airborne respiratory aerosol transport and deposition in a two-person office using a novel diffusion-based numerical model. Obeid S; White P; Rosati Rowe J; Ilacqua V; Rawat MS; Ferro AR; Ahmadi G J Expo Sci Environ Epidemiol; 2024 Mar; 34(2):356-375. PubMed ID: 37337048 [TBL] [Abstract][Full Text] [Related]
16. The effect of relative air humidity on the evaporation timescales of a human sneeze. Stiehl B; Shrestha R; Schroeder S; Delgado J; Bazzi A; Reyes J; Kinzel M; Ahmed K AIP Adv; 2022 Jul; 12(7):075210. PubMed ID: 35989720 [TBL] [Abstract][Full Text] [Related]
17. A spatiotemporally resolved infection risk model for airborne transmission of COVID-19 variants in indoor spaces. Li X; Lester D; Rosengarten G; Aboltins C; Patel M; Cole I Sci Total Environ; 2022 Mar; 812():152592. PubMed ID: 34954184 [TBL] [Abstract][Full Text] [Related]
18. Assessment of airborne transmission from coughing processes with thermal plume adjacent to body and radiators on effectiveness of social distancing. Issakhov A; Omarova P; Borsikbayeva A Environ Sci Pollut Res Int; 2022 Sep; 29(44):66808-66840. PubMed ID: 35508854 [TBL] [Abstract][Full Text] [Related]
19. Numerical simulation of social distancing of preventing airborne transmission in open space with lateral wind direction, taking into account temperature of human body and floor surface. Issakhov A; Omarova P; Abylkassymova A Environ Sci Pollut Res Int; 2023 Mar; 30(12):33206-33228. PubMed ID: 36478554 [TBL] [Abstract][Full Text] [Related]
20. Effect of saliva fluid properties on pathogen transmissibility. Reyes J; Fontes D; Bazzi A; Otero M; Ahmed K; Kinzel M Sci Rep; 2021 Aug; 11(1):16051. PubMed ID: 34362974 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]