These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 36252673)
21. How far droplets can move in indoor environments--revisiting the Wells evaporation-falling curve. Xie X; Li Y; Chwang AT; Ho PL; Seto WH Indoor Air; 2007 Jun; 17(3):211-25. PubMed ID: 17542834 [TBL] [Abstract][Full Text] [Related]
22. Computational characterization of the behavior of a saliva droplet in a social environment. Ugarte-Anero A; Fernandez-Gamiz U; Portal-Porras K; Zulueta E; Urbina-Garcia O Sci Rep; 2022 Apr; 12(1):6405. PubMed ID: 35437309 [TBL] [Abstract][Full Text] [Related]
23. Characterizations of particle size distribution of the droplets exhaled by sneeze. Han ZY; Weng WG; Huang QY J R Soc Interface; 2013 Nov; 10(88):20130560. PubMed ID: 24026469 [TBL] [Abstract][Full Text] [Related]
24. Numerical study of when and who will get infected by coronavirus in passenger car. Sarhan AAR; Naser P; Naser J Environ Sci Pollut Res Int; 2022 Aug; 29(38):57232-57247. PubMed ID: 35349056 [TBL] [Abstract][Full Text] [Related]
25. Effects of recirculation and air change per hour on COVID-19 transmission in indoor settings: A CFD study with varying HVAC parameters. Islam MT; Chen Y; Seong D; Verhougstraete M; Son YJ Heliyon; 2024 Aug; 10(15):e35092. PubMed ID: 39170199 [TBL] [Abstract][Full Text] [Related]
26. Modeling and experimental study of dispersion and deposition of respiratory emissions with implications for disease transmission. Coldrick S; Kelsey A; Ivings MJ; Foat TG; Parker ST; Noakes CJ; Bennett A; Rickard H; Moore G Indoor Air; 2022 Feb; 32(2):e13000. PubMed ID: 35225395 [TBL] [Abstract][Full Text] [Related]
27. Numerical modeling of a sneeze, a cough and a continuum speech inside a hospital lift. Chillón SA; Fernandez-Gamiz U; Zulueta E; Ugarte-Anero A; Urbina-Garcia O Heliyon; 2023 Feb; 9(2):e13370. PubMed ID: 36744064 [TBL] [Abstract][Full Text] [Related]
28. Pathways to community transmission of COVID-19 due to rapid evaporation of respiratory virulets. Basak M; Mitra S; Bandyopadhyay D J Colloid Interface Sci; 2022 Aug; 619():229-245. PubMed ID: 35397458 [TBL] [Abstract][Full Text] [Related]
29. CFD Simulation of the Airborne Transmission of COVID-19 Vectors Emitted during Respiratory Mechanisms: Revisiting the Concept of Safe Distance. Mariam ; Magar A; Joshi M; Rajagopal PS; Khan A; Rao MM; Sapra BK ACS Omega; 2021 Jul; 6(26):16876-16889. PubMed ID: 34250347 [TBL] [Abstract][Full Text] [Related]
30. Study of the interactions of sneezing droplets with particulate matter in a polluted environment. Dey P; Saha SK; Sarkar S Phys Fluids (1994); 2021 Nov; 33(11):113310. PubMed ID: 34803363 [TBL] [Abstract][Full Text] [Related]
31. A study of fluid dynamics and human physiology factors driving droplet dispersion from a human sneeze. Fontes D; Reyes J; Ahmed K; Kinzel M Phys Fluids (1994); 2020 Nov; 32(11):111904. PubMed ID: 33244214 [TBL] [Abstract][Full Text] [Related]
32. Computer simulations of pressure and velocity fields in a human upper airway during sneezing. Rahiminejad M; Haghighi A; Dastan A; Abouali O; Farid M; Ahmadi G Comput Biol Med; 2016 Apr; 71():115-27. PubMed ID: 26914240 [TBL] [Abstract][Full Text] [Related]
33. Numerical evaluation of face masks for prevention of COVID-19 airborne transmission. Liu J; Hao M; Chen S; Yang Y; Li J; Mei Q; Bian X; Liu K Environ Sci Pollut Res Int; 2022 Jun; 29(29):44939-44953. PubMed ID: 35141824 [TBL] [Abstract][Full Text] [Related]
34. Fate of Exhaled Droplets From Breathing and Coughing in Supermarket Checkouts and Passenger Cars. Nishandar SR; He Y; Princevac M; Edwards RD Environ Health Insights; 2023; 17():11786302221148274. PubMed ID: 36644342 [TBL] [Abstract][Full Text] [Related]
35. "Simulation of medical goggles to stop airborne transmission of viruses: computational fluid dynamics in ergonomics". Yang W; Chen T; Wang H; He R Ergonomics; 2023 Mar; 66(3):350-365. PubMed ID: 35659495 [TBL] [Abstract][Full Text] [Related]
36. Why airborne transmission hasn't been conclusive in case of COVID-19? An atmospheric science perspective. Ram K; Thakur RC; Singh DK; Kawamura K; Shimouchi A; Sekine Y; Nishimura H; Singh SK; Pavuluri CM; Singh RS; Tripathi SN Sci Total Environ; 2021 Jun; 773():145525. PubMed ID: 33940729 [TBL] [Abstract][Full Text] [Related]
37. Transformative Approach To Investigate the Microphysical Factors Influencing Airborne Transmission of Pathogens. Otero Fernandez M; Thomas RJ; Oswin H; Haddrell AE; Reid JP Appl Environ Microbiol; 2020 Nov; 86(23):. PubMed ID: 32978136 [TBL] [Abstract][Full Text] [Related]
38. A simplified tempo-spatial model to predict airborne pathogen release risk in enclosed spaces: An Eulerian-Lagrangian CFD approach. Mirzaei PA; Moshfeghi M; Motamedi H; Sheikhnejad Y; Bordbar H Build Environ; 2022 Jan; 207():108428. PubMed ID: 34658495 [TBL] [Abstract][Full Text] [Related]
39. Impact of Chemical Properties of Human Respiratory Droplets and Aerosol Particles on Airborne Viruses' Viability and Indoor Transmission. Ahlawat A; Mishra SK; Herrmann H; Rajeev P; Gupta T; Goel V; Sun Y; Wiedensohler A Viruses; 2022 Jul; 14(7):. PubMed ID: 35891477 [TBL] [Abstract][Full Text] [Related]
40. Investigation of theoretical scaling laws using large eddy simulations for airborne spreading of viral contagion from sneezing and coughing. Liu K; Allahyari M; Salinas J; Zgheib N; Balachandar S Phys Fluids (1994); 2021 Jun; 33(6):063318. PubMed ID: 34335006 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]