These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 36252673)
41. Peering inside a cough or sneeze to explain enhanced airborne transmission under dry weather. Liu K; Allahyari M; Salinas JS; Zgheib N; Balachandar S Sci Rep; 2021 May; 11(1):9826. PubMed ID: 33972590 [TBL] [Abstract][Full Text] [Related]
42. Airborne spread of infectious agents in the indoor environment. Wei J; Li Y Am J Infect Control; 2016 Sep; 44(9 Suppl):S102-8. PubMed ID: 27590694 [TBL] [Abstract][Full Text] [Related]
43. Short-range exposure to airborne virus transmission and current guidelines. Wang J; Alipour M; Soligo G; Roccon A; De Paoli M; Picano F; Soldati A Proc Natl Acad Sci U S A; 2021 Sep; 118(37):. PubMed ID: 34465564 [TBL] [Abstract][Full Text] [Related]
44. A novel CFD analysis to minimize the spread of COVID-19 virus in hospital isolation room. Bhattacharyya S; Dey K; Paul AR; Biswas R Chaos Solitons Fractals; 2020 Oct; 139():110294. PubMed ID: 32963423 [TBL] [Abstract][Full Text] [Related]
45. Numerical modeling of the distribution of virus carrying saliva droplets during sneeze and cough. Pendar MR; Páscoa JC Phys Fluids (1994); 2020 Aug; 32(8):083305. PubMed ID: 35002198 [TBL] [Abstract][Full Text] [Related]
46. Airborne and aerosol pathogen transmission modeling of respiratory events in buildings: An overview of computational fluid dynamics. Sheikhnejad Y; Aghamolaei R; Fallahpour M; Motamedi H; Moshfeghi M; Mirzaei PA; Bordbar H Sustain Cities Soc; 2022 Apr; 79():103704. PubMed ID: 35070645 [TBL] [Abstract][Full Text] [Related]
47. Insights into the evaporation characteristics of saliva droplets and aerosols: Levitation experiments and numerical modeling. Lieber C; Melekidis S; Koch R; Bauer HJ J Aerosol Sci; 2021 May; 154():105760. PubMed ID: 33518792 [TBL] [Abstract][Full Text] [Related]
48. Modeling the viral load dependence of residence times of virus-laden droplets from COVID-19-infected subjects in indoor environments. Srinivasan A; Krishan J; Bathula S; Mayya YS Indoor Air; 2021 Nov; 31(6):1786-1797. PubMed ID: 34118165 [TBL] [Abstract][Full Text] [Related]
49. CFD modeling of airborne pathogen transmission of COVID-19 in confined spaces under different ventilation strategies. Motamedi H; Shirzadi M; Tominaga Y; Mirzaei PA Sustain Cities Soc; 2022 Jan; 76():103397. PubMed ID: 34631393 [TBL] [Abstract][Full Text] [Related]
50. Aerosol Dynamics Model for Estimating the Risk from Short-Range Airborne Transmission and Inhalation of Expiratory Droplets of SARS-CoV-2. Dhawan S; Biswas P Environ Sci Technol; 2021 Jul; 55(13):8987-8999. PubMed ID: 34132519 [TBL] [Abstract][Full Text] [Related]
51. Tracing the origin of large respiratory droplets by their deposition characteristics inside the respiratory tract during speech. Wang Y; Wei J; Gao CX; Jin T; Liu L Build Simul; 2023; 16(5):781-794. PubMed ID: 37101943 [TBL] [Abstract][Full Text] [Related]
52. 3D modelling and simulation of the dispersion of droplets and drops carrying the SARS-CoV-2 virus in a railway transport coach. Armand P; Tâche J Sci Rep; 2022 Mar; 12(1):4025. PubMed ID: 35256741 [TBL] [Abstract][Full Text] [Related]
53. Mechanisms controlling the transport and evaporation of human exhaled respiratory droplets containing the severe acute respiratory syndrome coronavirus: a review. Norvihoho LK; Yin J; Zhou ZF; Han J; Chen B; Fan LH; Lichtfouse E Environ Chem Lett; 2023; 21(3):1701-1727. PubMed ID: 36846189 [TBL] [Abstract][Full Text] [Related]
55. Airborne transmission of SARS-CoV-2 is the dominant route of transmission: droplets and aerosols. Rabaan AA; Al-Ahmed SH; Al-Malkey M; Alsubki R; Ezzikouri S; Al-Hababi FH; Sah R; Al Mutair A; Alhumaid S; Al-Tawfiq JA; Al-Omari A; Al-Qaaneh AM; Al-Qahtani M; Tirupathi R; Al Hamad MA; Al-Baghli NA; Sulaiman T; Alsubait A; Mehta R; Abass E; Alawi M; Alshahrani F; Shrestha DB; Karobari MI; Pecho-Silva S; Arteaga-Livias K; Bonilla-Aldana DK; Rodriguez-Morales AJ Infez Med; 2021 Mar; 29(1):10-19. PubMed ID: 33664169 [TBL] [Abstract][Full Text] [Related]
56. Effects of ambient temperature and humidity on droplet lifetime - A perspective of exhalation sneeze droplets with COVID-19 virus transmission. Chen LD Int J Hyg Environ Health; 2020 Aug; 229():113568. PubMed ID: 32615522 [TBL] [Abstract][Full Text] [Related]
57. Modeling the load of SARS-CoV-2 virus in human expelled particles during coughing and speaking. Wang Y; Xu G; Huang YW PLoS One; 2020; 15(10):e0241539. PubMed ID: 33125421 [TBL] [Abstract][Full Text] [Related]
58. A review of strategies and their effectiveness in reducing indoor airborne transmission and improving indoor air quality. Nair AN; Anand P; George A; Mondal N Environ Res; 2022 Oct; 213():113579. PubMed ID: 35714688 [TBL] [Abstract][Full Text] [Related]
59. Dynamics of respiratory droplets carrying SARS-CoV-2 virus in closed atmosphere. Shadloo-Jahromi A; Bavi O; Hossein Heydari M; Kharati-Koopaee M; Avazzadeh Z Results Phys; 2020 Dec; 19():103482. PubMed ID: 33101885 [TBL] [Abstract][Full Text] [Related]