These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 36252673)
61. Analysis of airborne sputum droplets flow dynamic behaviors under different ambient conditions and aerosol size effects. Zeng G; Chen L; Yuan H; Yamamoto A; Chen H; Maruyama S Chemosphere; 2022 Nov; 307(Pt 1):135708. PubMed ID: 35850221 [TBL] [Abstract][Full Text] [Related]
62. Improving Indoor Air Ventilation by a Ceiling Fan to Mitigate Aerosols Transmission. Mallah SR; Behera S; Sharma A; Agrawal A; Bhardwaj R Trans Indian Natl Acad Eng; 2023; 8(1):171-182. PubMed ID: 36742163 [TBL] [Abstract][Full Text] [Related]
63. Breathing, speaking, coughing or sneezing: What drives transmission of SARS-CoV-2? Stadnytskyi V; Anfinrud P; Bax A J Intern Med; 2021 Nov; 290(5):1010-1027. PubMed ID: 34105202 [TBL] [Abstract][Full Text] [Related]
64. Airborne transmission of severe acute respiratory syndrome coronavirus-2 to healthcare workers: a narrative review. Wilson NM; Norton A; Young FP; Collins DW Anaesthesia; 2020 Aug; 75(8):1086-1095. PubMed ID: 32311771 [TBL] [Abstract][Full Text] [Related]
65. Transition from saliva droplets to solid aerosols in the context of COVID-19 spreading. Stiti M; Castanet G; Corber A; Alden M; Berrocal E Environ Res; 2022 Mar; 204(Pt B):112072. PubMed ID: 34562485 [TBL] [Abstract][Full Text] [Related]
66. Sneezing and asymptomatic virus transmission. Busco G; Yang SR; Seo J; Hassan YA Phys Fluids (1994); 2020 Jul; 32(7):073309. PubMed ID: 32684746 [TBL] [Abstract][Full Text] [Related]
67. Review of indoor aerosol generation, transport, and control in the context of COVID-19. Kohanski MA; Lo LJ; Waring MS Int Forum Allergy Rhinol; 2020 Oct; 10(10):1173-1179. PubMed ID: 32652898 [TBL] [Abstract][Full Text] [Related]
68. How human thermal plume influences near-human transport of respiratory droplets and airborne particles: a review. Sun S; Li J; Han J Environ Chem Lett; 2021; 19(3):1971-1982. PubMed ID: 33495695 [TBL] [Abstract][Full Text] [Related]
69. Indoor transmission dynamics of expired SARS-CoV-2 virus in a model African hospital ward. Adeniran JA; Mohammed IA; Muniru OI; Oloyede T; Sonibare OO; Yusuf MO; Abdulraheem KA; Odediran ET; Yusuf RO; Sonibare JA J Environ Health Sci Eng; 2021 Jun; 19(1):331-341. PubMed ID: 33500782 [TBL] [Abstract][Full Text] [Related]
70. 3D modelling and simulation of the impact of wearing a mask on the dispersion of particles carrying the SARS-CoV-2 virus in a railway transport coach. Armand P; Tâche J Sci Rep; 2023 Jun; 13(1):8929. PubMed ID: 37264020 [TBL] [Abstract][Full Text] [Related]
71. Trajectories of large respiratory droplets in indoor environment: A simplified approach. Cheng CH; Chow CL; Chow WK Build Environ; 2020 Oct; 183():107196. PubMed ID: 32836704 [TBL] [Abstract][Full Text] [Related]
72. Modeling transient particle transport in transient indoor airflow by fast fluid dynamics with the Markov chain method. Liu W; van Hooff T; An Y; Hu S; Chen C Build Environ; 2020 Dec; 186():107323. PubMed ID: 33041458 [TBL] [Abstract][Full Text] [Related]
73. Airborne transmission of COVID-19 virus in enclosed spaces: An overview of research methods. Zhao X; Liu S; Yin Y; Zhang TT; Chen Q Indoor Air; 2022 Jun; 32(6):e13056. PubMed ID: 35762235 [TBL] [Abstract][Full Text] [Related]
74. What were the historical reasons for the resistance to recognizing airborne transmission during the COVID-19 pandemic? Jimenez JL; Marr LC; Randall K; Ewing ET; Tufekci Z; Greenhalgh T; Tellier R; Tang JW; Li Y; Morawska L; Mesiano-Crookston J; Fisman D; Hegarty O; Dancer SJ; Bluyssen PM; Buonanno G; Loomans MGLC; Bahnfleth WP; Yao M; Sekhar C; Wargocki P; Melikov AK; Prather KA Indoor Air; 2022 Aug; 32(8):e13070. PubMed ID: 36040283 [TBL] [Abstract][Full Text] [Related]
75. Semi-surrogate modelling of droplets evaporation process via XGBoost integrated CFD simulations. Yan Y; Li X; Sun W; Fang X; He F; Tu J Sci Total Environ; 2023 Oct; 895():164968. PubMed ID: 37356762 [TBL] [Abstract][Full Text] [Related]
76. Extended Lifetime of Respiratory Droplets in a Turbulent Vapor Puff and Its Implications on Airborne Disease Transmission. Chong KL; Ng CS; Hori N; Yang R; Verzicco R; Lohse D Phys Rev Lett; 2021 Jan; 126(3):034502. PubMed ID: 33543958 [TBL] [Abstract][Full Text] [Related]
77. Experimental visualization of sneezing and efficacy of face masks and shields. Arumuru V; Pasa J; Samantaray SS Phys Fluids (1994); 2020 Nov; 32(11):115129. PubMed ID: 33244217 [TBL] [Abstract][Full Text] [Related]
78. COVID-19 aerodynamic evaluation of social distancing in indoor environments, a numerical study. Sarhan AR; Naser P; Naser J J Environ Health Sci Eng; 2021 Dec; 19(2):1969-1978. PubMed ID: 34721881 [TBL] [Abstract][Full Text] [Related]
79. Challenges in simulating and modeling the airborne virus transmission: A state-of-the-art review. Pourfattah F; Wang LP; Deng W; Ma YF; Hu L; Yang B Phys Fluids (1994); 2021 Oct; 33(10):101302. PubMed ID: 34803360 [TBL] [Abstract][Full Text] [Related]
80. A Review on Applications of CFD Modeling in COVID-19 Pandemic. Mohamadi F; Fazeli A Arch Comput Methods Eng; 2022; 29(6):3567-3586. PubMed ID: 35079217 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]