These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 36252761)

  • 21. Pre-digestion to enhance volatile fatty acids (VFAs) concentration as a carbon source for denitrification in treatment of liquid swine manure.
    Wu SX; Chen L; Zhu J; Walquist M; Christian D
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2018 Aug; 53(10):891-898. PubMed ID: 29708831
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhanced volatile fatty acids production from anaerobic fermentation of food waste: A mini-review focusing on acidogenic metabolic pathways.
    Zhou M; Yan B; Wong JWC; Zhang Y
    Bioresour Technol; 2018 Jan; 248(Pt A):68-78. PubMed ID: 28693950
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Polysorbate-80 pretreatment contributing to volatile fatty acids production associated microbial interactions via acidogenic fermentation of waste activated sludge.
    Ai X; Xin X; Wei W; Xie J; Hong J
    Bioresour Technol; 2022 Feb; 345():126488. PubMed ID: 34871722
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of initial pH on mesophilic hydrolysis and acidification of swine manure.
    Lin L; Wan C; Liu X; Lee DJ; Lei Z; Zhang Y; Tay JH
    Bioresour Technol; 2013 May; 136():302-8. PubMed ID: 23567695
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microbial Community Analysis of Digested Liquids Exhibiting Different Methane Production Potential in Methane Fermentation of Swine Feces.
    Nakamura Y; Ishibashi M; Kamitani Y; Tsurumaru H
    Appl Biochem Biotechnol; 2020 Jul; 191(3):1140-1154. PubMed ID: 31965417
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effect of limited aeration on swine manure phosphorus removal.
    Zhu J; Luo A; Ndegwa PM
    J Environ Sci Health B; 2001 Mar; 36(2):209-18. PubMed ID: 11409499
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metagenomic insights into improving mechanisms of Fe
    Yang G; Xu C; Varjani S; Zhou Y; Wc Wong J; Duan G
    Bioresour Technol; 2022 Oct; 361():127703. PubMed ID: 35907599
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Short chain carboxylic acids production and dynamicity of microbial communities from co-digestion of swine manure and corn silage.
    Cao Q; Zhang W; Lian T; Wang S; Dong H
    Bioresour Technol; 2021 Jan; 320(Pt B):124400. PubMed ID: 33220542
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electrochemical pretreatment enhancing co-fermentation of waste activated sludge and food waste into volatile fatty acids: Performance, microbial community dynamics and metabolism.
    Lin Q; Dong X; Luo J; Zeng Q; Ma J; Wang Z; Chen G; Guo G
    Bioresour Technol; 2022 Oct; 361():127736. PubMed ID: 35932947
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Production of volatile fatty acids and H
    Slezak R; Grzelak J; Krzystek L; Ledakowicz S
    Environ Technol; 2020 Dec; 41(28):3767-3777. PubMed ID: 31084521
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Impact of Organic Loading Rate in Volatile Fatty Acids Production and Population Dynamics Using Microalgae Biomass as Substrate.
    Magdalena JA; Greses S; González-Fernández C
    Sci Rep; 2019 Dec; 9(1):18374. PubMed ID: 31804573
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Production of polyhydroxyalkanoates (PHAs) by
    Vu DH; Wainaina S; Taherzadeh MJ; Åkesson D; Ferreira JA
    Bioengineered; 2021 Dec; 12(1):2480-2498. PubMed ID: 34115556
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhanced volatile fatty acids production during anaerobic digestion of lignocellulosic biomass via micro-oxygenation.
    Sawatdeenarunat C; Sung S; Khanal SK
    Bioresour Technol; 2017 Aug; 237():139-145. PubMed ID: 28216003
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of diclofenac on the production of volatile fatty acids from anaerobic fermentation of waste activated sludge.
    Hu J; Zhao J; Wang D; Li X; Zhang D; Xu Q; Peng L; Yang Q; Zeng G
    Bioresour Technol; 2018 Apr; 254():7-15. PubMed ID: 29413941
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Carbohydrate-to-protein ratio regulates hydrolysis and acidogenesis processes during volatile fatty acids production.
    Wang L; Hao J; Wang C; Li Y; Yang Q
    Bioresour Technol; 2022 Jul; 355():127266. PubMed ID: 35526712
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Acidogenic fermentation of iron-enhanced primary sedimentation sludge under different pH conditions for production of volatile fatty acids.
    Lin L; Li XY
    Chemosphere; 2018 Mar; 194():692-700. PubMed ID: 29245135
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Insights into microbial interaction profiles contributing to volatile fatty acids production via acidogenic fermentation of waste activated sludge assisted by calcium oxide pretreatment.
    Xin X; She Y; Hong J
    Bioresour Technol; 2021 Jan; 320(Pt A):124287. PubMed ID: 33120057
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bioconversion of waste activated sludge hydrolysate into polyhydroxyalkanoates using Paracoccus sp. TOH: Volatile fatty acids generation and fermentation strategy.
    Zhao L; Zhang J; Xu Z; Cai S; Chen L; Cai T; Ji XM
    Bioresour Technol; 2022 Nov; 363():127939. PubMed ID: 36100183
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of temperature on fermentative VFAs production from waste sludge stimulated by riboflavin and the shifts of microbial community.
    Liu J; Huang J; Li H; Shi B; Xu Y; Liu J; Zhang D; Tang J; Hou P
    Water Sci Technol; 2022 Feb; 85(4):1191-1201. PubMed ID: 35228363
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The role of methanogens in acetic acid production under different salinity conditions.
    Xiao K; Guo C; Maspolim Y; Zhou Y; Ng WJ
    Chemosphere; 2016 Oct; 161():53-60. PubMed ID: 27421101
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.