These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 3625280)

  • 1. Coordinated release of ATP and ACh from cholinergic synaptosomes and its inhibition by calmodulin antagonists.
    Schweitzer E
    J Neurosci; 1987 Sep; 7(9):2948-56. PubMed ID: 3625280
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Newly synthesized and preformed acetylcholine are released from Torpedo synaptosomes by different pathways.
    Luz S; Pinchasi I; Michaelson DM
    J Neurochem; 1985 Jul; 45(1):43-50. PubMed ID: 3998731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous release of acetylcholine and ATP from stimulated cholinergic synaptosomes.
    Morel N; Meunier FM
    J Neurochem; 1981 May; 36(5):1766-73. PubMed ID: 7241136
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of potassium depolarization on intracellular compartmentalization of ATP in cholinergic synaptosomes isolated from Torpedo electric organ.
    Solsona C; Saltó C; Ymbern A
    Biochim Biophys Acta; 1991 Oct; 1095(1):57-62. PubMed ID: 1834177
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Opiates depress ACh and ATP release from cholinergic synaptosomes by blocking calcium uptake.
    Saltó C; Calvet R; Guitart X; Solsona C; Marsal J
    Toxicol Appl Pharmacol; 1990 Oct; 106(1):20-7. PubMed ID: 2251680
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acetylcholine and ATP are coreleased from the electromotor nerve terminals of Narcine brasiliensis by an exocytotic mechanism.
    Unsworth CD; Johnson RG
    Proc Natl Acad Sci U S A; 1990 Jan; 87(2):553-7. PubMed ID: 2137245
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ATP release from pure cholinergic synaptosomes is not blocked by tetanus toxin.
    Rabasseda X; Solsona C; Marsal J; Egea G; Bizzini B
    FEBS Lett; 1987 Mar; 213(2):337-40. PubMed ID: 3556585
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transmitter release from presynaptic terminals of electric organ: inhibition by the calcium channel antagonist omega Conus toxin.
    Yeager RE; Yoshikami D; Rivier J; Cruz LJ; Miljanich GP
    J Neurosci; 1987 Aug; 7(8):2390-6. PubMed ID: 3112325
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ouabain induces acetylcholine release from pure cholinergic synaptosomes independently of extracellular calcium concentration.
    Blasi JM; Ceña V; González-García C; Marsal J; Solsona C
    Neurochem Res; 1988 Nov; 13(11):1035-41. PubMed ID: 3237303
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biochemical evidence that acetylcholine release from cholinergic nerve terminals is mostly vesicular.
    Michaelson DM; Burstein M
    FEBS Lett; 1985 Sep; 188(2):389-93. PubMed ID: 4029394
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Omega-conotoxin differentially blocks acetylcholine and adenosine triphosphate releases from Torpedo synaptosomes.
    Fariñas I; Solsona C; Marsal J
    Neuroscience; 1992; 47(3):641-8. PubMed ID: 1584411
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of Pb2+ and Cd2+ on acetylcholine release and Ca2+ movements in synaptosomes and subcellular fractions from rat brain and Torpedo electric organ.
    Suszkiw J; Toth G; Murawsky M; Cooper GP
    Brain Res; 1984 Dec; 323(1):31-46. PubMed ID: 6525509
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The release of acetylcholine: from a cellular towards a molecular mechanism.
    Israël M; Manaranche R
    Biol Cell; 1985; 55(1-2):1-14. PubMed ID: 2937485
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thiamine and cholinergic transmission in the electric organ of Torpedo. I. Cellular localization and functional changes of thiamine and thiamine phosphate esters.
    Eder L; Dunant Y
    J Neurochem; 1980 Dec; 35(6):1278-86. PubMed ID: 6255096
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Translocation of cytosolic acetylcholine into synaptic vesicles and demonstration of vesicular release.
    Michaelson DM; Burstein M; Licht R
    J Biol Chem; 1986 May; 261(15):6831-5. PubMed ID: 3700417
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compared effects of two vesicular acetylcholine uptake blockers, AH5183 and cetiedil, on cholinergic functions in Torpedo synaptosomes: acetylcholine synthesis, choline transport, vesicular uptake, and evoked acetylcholine release.
    Gaudry-Talarmain YM; Diebler MF; O'Regan S
    J Neurochem; 1989 Mar; 52(3):822-9. PubMed ID: 2493069
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cholinergic nerve terminals contain ascorbic acid which induces Ca2+-dependent release of acetylcholine and ATP from isolated Torpedo synaptic vesicles.
    Pinchasi I; Michaelson DM; Sokolovsky M
    FEBS Lett; 1979 Dec; 108(1):189-92. PubMed ID: 520543
    [No Abstract]   [Full Text] [Related]  

  • 18. Calcium-independent release of acetylcholine from electric organ synaptosomes and its changes by depolarization and cholinergic drugs.
    Dolezal V; Diebler MF; Lazereg S; Israël M; Tucek S
    J Neurochem; 1988 Feb; 50(2):406-13. PubMed ID: 2447238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adenosine and related nucleotides alter calcium uptake in depolarized synaptosomes of torpedo electric organ.
    Quintana J
    J Neural Transm; 1985; 64(3-4):271-84. PubMed ID: 4086992
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of trifluoperazine on the cholinergic function of the hippocampus of the rat.
    Budai D; Kása P
    Neuropharmacology; 1987 May; 26(5):439-43. PubMed ID: 3037415
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.