These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 36253366)

  • 1. Genetic model of the El Laco magnetite-apatite deposits by extrusion of iron-rich melt.
    Keller T; Tornos F; Hanchar JM; Pietruszka DK; Soldati A; Dingwell DB; Suckale J
    Nat Commun; 2022 Oct; 13(1):6114. PubMed ID: 36253366
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magmatic immiscibility and the origin of magnetite-(apatite) iron deposits.
    Pietruszka DK; Hanchar JM; Tornos F; Wirth R; Graham NA; Severin KP; Velasco F; Steele-MacInnis M; Bain WM
    Nat Commun; 2023 Dec; 14(1):8424. PubMed ID: 38114455
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immiscible hydrous Fe-Ca-P melt and the origin of iron oxide-apatite ore deposits.
    Hou T; Charlier B; Holtz F; Veksler I; Zhang Z; Thomas R; Namur O
    Nat Commun; 2018 Apr; 9(1):1415. PubMed ID: 29650951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal evolution of Andean iron oxide-apatite (IOA) deposits as revealed by magnetite thermometry.
    Palma G; Reich M; Barra F; Ovalle JT; Del Real I; Simon AC
    Sci Rep; 2021 Sep; 11(1):18424. PubMed ID: 34531472
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of massive iron deposits linked to explosive volcanic eruptions.
    Ovalle JT; La Cruz NL; Reich M; Barra F; Simon AC; Konecke BA; Rodriguez-Mustafa MA; Deditius AP; Childress TM; Morata D
    Sci Rep; 2018 Oct; 8(1):14855. PubMed ID: 30291283
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of iron-rich hydrosaline liquids in the formation of Kiruna-type iron oxide-apatite deposits.
    Zeng LP; Zhao XF; Spandler C; Mavrogenes JA; Mernagh TP; Liao W; Fan YZ; Hu Y; Fu B; Li JW
    Sci Adv; 2024 Apr; 10(17):eadk2174. PubMed ID: 38657067
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Origin of carbonatites-liquid immiscibility caught in the act.
    Berndt J; Klemme S
    Nat Commun; 2022 May; 13(1):2892. PubMed ID: 35610205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The origin of Cu/Au ratios in porphyry-type ore deposits.
    Halter WE; Pettke T; Heinrich CA
    Science; 2002 Jun; 296(5574):1844-6. PubMed ID: 12052953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Origin of alkali-rich volcanic and alkali-poor intrusive carbonatites from a common parental magma.
    Chayka IF; Kamenetsky VS; Vladykin NV; Kontonikas-Charos A; Prokopyev IR; Stepanov SY; Krasheninnikov SP
    Sci Rep; 2021 Sep; 11(1):17627. PubMed ID: 34475480
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accumulation of magnetite by flotation on bubbles during decompression of silicate magma.
    Knipping JL; Webster JD; Simon AC; Holtz F
    Sci Rep; 2019 Mar; 9(1):3852. PubMed ID: 30846740
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magma heating by decompression-driven crystallization beneath andesite volcanoes.
    Blundy J; Cashman K; Humphreys M
    Nature; 2006 Sep; 443(7107):76-80. PubMed ID: 16957729
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Global Fe-O isotope correlation reveals magmatic origin of Kiruna-type apatite-iron-oxide ores.
    Troll VR; Weis FA; Jonsson E; Andersson UB; Majidi SA; Högdahl K; Harris C; Millet MA; Chinnasamy SS; Kooijman E; Nilsson KP
    Nat Commun; 2019 Apr; 10(1):1712. PubMed ID: 30979878
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Montecristo mining district, northern Chile: the relationship between vein-like magnetite-(apatite) and iron oxide-copper-gold deposits.
    Mateo L; Tornos F; Hanchar JM; Villa IM; Stein HJ; Delgado A
    Miner Depos; 2023; 58(6):1023-1049. PubMed ID: 37426339
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Melt inclusions in veins: linking magmas and porphyry Cu deposits.
    Harris AC; Kamenetsky VS; White NC; van Achterbergh E; Ryan CG
    Science; 2003 Dec; 302(5653):2109-11. PubMed ID: 14684818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ observations of tungsten speciation and partitioning behavior during fluid exsolution from granitic melt.
    Qiu Y; Wang X; Lu J; Chou IM; Wan Y; Zhang R; Zhang W; Sun R
    Sci Bull (Beijing); 2022 Nov; 67(22):2358-2368. PubMed ID: 36546225
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compositional boundary layers trigger liquid unmixing in a basaltic crystal mush.
    Honour VC; Holness MB; Charlier B; Piazolo SC; Namur O; Prosa TJ; Martin I; Helz RT; Maclennan J; Jean MM
    Nat Commun; 2019 Oct; 10(1):4821. PubMed ID: 31645560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The lunar apatite paradox.
    Boyce JW; Tomlinson SM; McCubbin FM; Greenwood JP; Treiman AH
    Science; 2014 Apr; 344(6182):400-2. PubMed ID: 24652938
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spin crossover and iron-rich silicate melt in the Earth's deep mantle.
    Nomura R; Ozawa H; Tateno S; Hirose K; Hernlund J; Muto S; Ishii H; Hiraoka N
    Nature; 2011 May; 473(7346):199-202. PubMed ID: 21516105
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of Magnetite Stoichiometry on the Binding of Emerging Organic Contaminants.
    Cheng W; Marsac R; Hanna K
    Environ Sci Technol; 2018 Jan; 52(2):467-473. PubMed ID: 29215874
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stabilization of Ferrihydrite and Lepidocrocite by Silicate during Fe(II)-Catalyzed Mineral Transformation: Impact on Particle Morphology and Silicate Distribution.
    Schulz K; ThomasArrigo LK; Kaegi R; Kretzschmar R
    Environ Sci Technol; 2022 May; 56(9):5929-5938. PubMed ID: 35435661
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.