BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 36253417)

  • 1. Sirtuin5 protects colorectal cancer from DNA damage by keeping nucleotide availability.
    Wang HL; Chen Y; Wang YQ; Tao EW; Tan J; Liu QQ; Li CM; Tong XM; Gao QY; Hong J; Chen YX; Fang JY
    Nat Commun; 2022 Oct; 13(1):6121. PubMed ID: 36253417
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sirtuin5 contributes to colorectal carcinogenesis by enhancing glutaminolysis in a deglutarylation-dependent manner.
    Wang YQ; Wang HL; Xu J; Tan J; Fu LN; Wang JL; Zou TH; Sun DF; Gao QY; Chen YX; Fang JY
    Nat Commun; 2018 Feb; 9(1):545. PubMed ID: 29416026
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transketolase Deficiency Protects the Liver from DNA Damage by Increasing Levels of Ribose 5-Phosphate and Nucleotides.
    Li M; Lu Y; Li Y; Tong L; Gu XC; Meng J; Zhu Y; Wu L; Feng M; Tian N; Zhang P; Xu T; Lin SH; Tong X
    Cancer Res; 2019 Jul; 79(14):3689-3701. PubMed ID: 31101762
    [No Abstract]   [Full Text] [Related]  

  • 4. The bicyclic intermediate structure provides insights into the desuccinylation mechanism of human sirtuin 5 (SIRT5).
    Zhou Y; Zhang H; He B; Du J; Lin H; Cerione RA; Hao Q
    J Biol Chem; 2012 Aug; 287(34):28307-14. PubMed ID: 22767592
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cloning, chromosomal characterization and FISH mapping of the NAD(+)-dependent histone deacetylase gene sirtuin 5 in the mouse.
    Voelter-Mahlknecht S; Mahlknecht U
    Int J Oncol; 2013 Jul; 43(1):237-45. PubMed ID: 23673559
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SIRT5-mediated deacetylation of LDHB promotes autophagy and tumorigenesis in colorectal cancer.
    Shi L; Yan H; An S; Shen M; Jia W; Zhang R; Zhao L; Huang G; Liu J
    Mol Oncol; 2019 Feb; 13(2):358-375. PubMed ID: 30443978
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assignment of the NAD-dependent deacetylase sirtuin 5 gene (SIRT5) to human chromosome band 6p23 by in situ hybridization.
    Mahlknecht U; Ho AD; Letzel S; Voelter-Mahlknecht S
    Cytogenet Genome Res; 2006; 112(3-4):208-12. PubMed ID: 16484774
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondrial sirtuins in the rat adrenal gland: location within the glands of males and females, hormonal and developmental regulation of gene expressions.
    Celichowski P; Jopek K; Szyszka M; Tyczewska M; Malendowicz LK; Rucinski M
    Folia Histochem Cytobiol; 2017; 55(4):190-202. PubMed ID: 29261224
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generation and Purification of Catalytically Active Recombinant Sirtuin5 (SIRT5) Protein.
    Kumar S; Lombard DB
    Methods Mol Biol; 2016; 1436():241-57. PubMed ID: 27246219
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SIRT5 facilitates cancer cell growth and drug resistance in non-small cell lung cancer.
    Lu W; Zuo Y; Feng Y; Zhang M
    Tumour Biol; 2014 Nov; 35(11):10699-705. PubMed ID: 25070488
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SIRT5 inhibits peroxisomal ACOX1 to prevent oxidative damage and is downregulated in liver cancer.
    Chen XF; Tian MX; Sun RQ; Zhang ML; Zhou LS; Jin L; Chen LL; Zhou WJ; Duan KL; Chen YJ; Gao C; Cheng ZL; Wang F; Zhang JY; Sun YP; Yu HX; Zhao YZ; Yang Y; Liu WR; Shi YH; Xiong Y; Guan KL; Ye D
    EMBO Rep; 2018 May; 19(5):. PubMed ID: 29491006
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeting a Sirt5-Positive Subpopulation Overcomes Multidrug Resistance in Wild-Type Kras Colorectal Carcinomas.
    Du Z; Liu X; Chen T; Gao W; Wu Z; Hu Z; Wei D; Gao C; Li Q
    Cell Rep; 2018 Mar; 22(10):2677-2689. PubMed ID: 29514096
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Overview of SIRT5 as a potential therapeutic target: Structure, function and inhibitors.
    Wang Y; Chen H; Zha X
    Eur J Med Chem; 2022 Jun; 236():114363. PubMed ID: 35436671
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial Sirtuins in Chronic Degenerative Diseases: New Metabolic Targets in Colorectal Cancer.
    Colloca A; Balestrieri A; Anastasio C; Balestrieri ML; D'Onofrio N
    Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328633
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SIRT5 Contributes to Colorectal Cancer Growth by Regulating T Cell Activity.
    Wang K; Hu Z; Zhang C; Yang L; Feng L; Yang P; Yu H
    J Immunol Res; 2020; 2020():3792409. PubMed ID: 32953892
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SIRT5-mediated ME2 desuccinylation promotes cancer growth by enhancing mitochondrial respiration.
    Teng P; Cui K; Yao S; Fei B; Ling F; Li C; Huang Z
    Cell Death Differ; 2024 Jan; 31(1):65-77. PubMed ID: 38007551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The nuclear translocation of transketolase inhibits the farnesoid receptor expression by promoting the binding of HDAC3 to FXR promoter in hepatocellular carcinoma cell lines.
    Li M; Zhang X; Lu Y; Meng S; Quan H; Hou P; Tong P; Chai D; Gao X; Zheng J; Tong X; Bai J
    Cell Death Dis; 2020 Jan; 11(1):31. PubMed ID: 31949131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Repression of p53 function by SIRT5-mediated desuccinylation at Lysine 120 in response to DNA damage.
    Liu X; Rong F; Tang J; Zhu C; Chen X; Jia S; Wang Z; Sun X; Deng H; Zha H; Ouyang G; Xiao W
    Cell Death Differ; 2022 Apr; 29(4):722-736. PubMed ID: 34642466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transketolase promotes colorectal cancer metastasis through regulating AKT phosphorylation.
    Li M; Zhao X; Yong H; Xu J; Qu P; Qiao S; Hou P; Li Z; Chu S; Zheng J; Bai J
    Cell Death Dis; 2022 Feb; 13(2):99. PubMed ID: 35110545
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emerging Roles for SIRT5 in Metabolism and Cancer.
    Bringman-Rodenbarger LR; Guo AH; Lyssiotis CA; Lombard DB
    Antioxid Redox Signal; 2018 Mar; 28(8):677-690. PubMed ID: 28707979
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.