These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 3625351)

  • 21. Modelling spatial contrast sensitivity functions for chromatic and luminance-modulated gratings.
    Rovamo JM; Kankaanpää MI; Kukkonen H
    Vision Res; 1999 Jul; 39(14):2387-98. PubMed ID: 10367059
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effect of chromatic aberration on visual acuity.
    Campbell FW; Gubisch RW
    J Physiol; 1967 Sep; 192(2):345-58. PubMed ID: 6050153
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Perception of green and red under chromatic adaptation: the effects of stimulus size and eccentricity.
    Rovamo J; Iivanainen A
    Optom Vis Sci; 1994 Aug; 71(8):492-501. PubMed ID: 7970565
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Wavelength-dependent magnification and polychromatic image quality in eyes corrected for longitudinal chromatic aberration.
    Zhang X; Thibos LN; Bradley A
    Optom Vis Sci; 1997 Jul; 74(7):563-9. PubMed ID: 9293526
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spatiotemporal variation of chromatic and achromatic contrast thresholds.
    Kelly DH
    J Opt Soc Am; 1983 Jun; 73(6):742-50. PubMed ID: 6875700
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The interactions between chromatic aberration, defocus and stimulus chromaticity: implications for visual physiology and colorimetry.
    Flitcroft DI
    Vision Res; 1989; 29(3):349-60. PubMed ID: 2773345
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effect of chromatic dispersion on pseudophakic optical performance.
    Zhao H; Mainster MA
    Br J Ophthalmol; 2007 Sep; 91(9):1225-9. PubMed ID: 17475697
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cortical magnification factor and contrast sensitivity to luminance-modulated chromatic gratings.
    Rovamo J
    Acta Physiol Scand; 1983 Dec; 119(4):365-71. PubMed ID: 6666617
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Colour vision as a post-receptoral specialization of the central visual field.
    Mullen KT
    Vision Res; 1991; 31(1):119-30. PubMed ID: 2006545
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Experimental determination of the chromatic difference of magnification of the human eye and the location of the anterior nodal point.
    Zhang X; Bradley A; Thibos LN
    J Opt Soc Am A; 1993 Feb; 10(2):213-20. PubMed ID: 8478747
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The contrast sensitivity of human colour vision to red-green and blue-yellow chromatic gratings.
    Mullen KT
    J Physiol; 1985 Feb; 359():381-400. PubMed ID: 3999044
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of induced transverse chromatic aberration on peripheral vision.
    Winter S; Fathi MT; Venkataraman AP; Rosén R; Seidemann A; Esser G; Lundström L; Unsbo P
    J Opt Soc Am A Opt Image Sci Vis; 2015 Oct; 32(10):1764-71. PubMed ID: 26479929
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spatial neural modulation transfer function of human foveal visual system for equiluminous chromatic gratings.
    Rovamo JM; Kankaanpää MI; Hallikainen J
    Vision Res; 2001 Jun; 41(13):1659-67. PubMed ID: 11348648
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Short-wavelength acuity: optical factors affecting detection and resolution of blue-yellow sinusoidal gratings in foveal and peripheral vision.
    Anderson RS; Coulter E; Zlatkova MB; Demirel S
    Vision Res; 2003 Jan; 43(1):101-7. PubMed ID: 12505609
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Assessment of just-noticeable differences for refractive errors and spherical aberration using visual simulation.
    Legras R; Chateau N; Charman WN
    Optom Vis Sci; 2004 Sep; 81(9):718-28. PubMed ID: 15365392
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Isoluminance and chromatic motion perception throughout the visual field.
    Bilodeau L; Faubert J
    Vision Res; 1997 Aug; 37(15):2073-81. PubMed ID: 9327055
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A neural and computational model for the chromatic control of accommodation.
    Flitcroft DI
    Vis Neurosci; 1990 Dec; 5(6):547-55. PubMed ID: 2085470
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Statistical variation of aberration structure and image quality in a normal population of healthy eyes.
    Thibos LN; Hong X; Bradley A; Cheng X
    J Opt Soc Am A Opt Image Sci Vis; 2002 Dec; 19(12):2329-48. PubMed ID: 12469728
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effect of orientation on the visual resolution of gratings.
    Campbell FW; Kulikowski JJ; Levinson J
    J Physiol; 1966 Nov; 187(2):427-36. PubMed ID: 5972182
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Anisotropy in the chromatic channel: a horizontal-vertical effect.
    Murasugi CM; Cavanagh P
    Spat Vis; 1988; 3(4):281-91. PubMed ID: 3153675
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.