These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 36253631)

  • 1. Breakage Assessment of Lath-Like Crystals in a Novel Laboratory-Scale Agitated Filter Bed Dryer.
    Goh WP; Sinha K; Nere NK; Ho R; Bordawekar S; Sheikh A; Ghadiri M
    Pharm Res; 2022 Dec; 39(12):3209-3221. PubMed ID: 36253631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of impact breakage of carbamazepine dihydrate due to aerodynamic dispersion.
    Pin Goh W; Ali M; Sinha K; Nere NK; Ho R; Bordawekar S; Sheikh A; Ghadiri M
    Int J Pharm; 2019 Dec; 572():118780. PubMed ID: 31715356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Systematic investigation of parameters affecting the performance of an agitated filter-dryer.
    Sahni EK; Bogner RH; Chaudhuri B
    J Pharm Sci; 2013 Jul; 102(7):2198-213. PubMed ID: 23650096
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling Multiphase Heat and Mass Transfer in an Agitated Filter Dryer by Integrating Experiment, Computations, and Analytical Solutions.
    Belekar VV; Murphy EJ; Heindel TJ; Nere NK; Subramaniam S
    Pharm Res; 2022 Sep; 39(9):1971-1990. PubMed ID: 36192616
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The consequences of granulate heterogeneity towards breakage and attrition upon fluid-bed drying.
    Nieuwmeyer F; van der Voort Maarschalk K; Vromans H
    Eur J Pharm Biopharm; 2008 Sep; 70(1):402-8. PubMed ID: 18440211
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of agitated drying on the morphology of L-threonine (needle-like) crystals.
    Lekhal A; Girard KP; Brown MA; Kiang S; Khinast JG; Glasser BJ
    Int J Pharm; 2004 Feb; 270(1-2):263-77. PubMed ID: 14726141
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Breakage and drying behaviour of granules in a continuous fluid bed dryer: Influence of process parameters and wet granule transfer.
    De Leersnyder F; Vanhoorne V; Bekaert H; Vercruysse J; Ghijs M; Bostijn N; Verstraeten M; Cappuyns P; Van Assche I; Vander Heyden Y; Ziemons E; Remon JP; Nopens I; Vervaet C; De Beer T
    Eur J Pharm Sci; 2018 Mar; 115():223-232. PubMed ID: 29374528
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of binder types on the breakage and drying behavior of granules in a semi-continuous fluid bed dryer after twin screw wet granulation.
    Vandevivere L; Denduyver P; Portier C; Häusler O; De Beer T; Vervaet C; Vanhoorne V
    Int J Pharm; 2022 Feb; 614():121449. PubMed ID: 34999149
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combination of Colloidal Silicon Dioxide with Spray-Dried Solid Dispersion to Facilitate Discharge from an Agitated Dryer.
    Lee YC; McNevin M; Ikeda C; Chouzouri G; Moser J; Harris D; Howell L
    AAPS PharmSciTech; 2019 May; 20(5):182. PubMed ID: 31054050
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the Breakage of High Aspect Ratio Crystals in Filter Beds under Continuous Percolation.
    Mahdi FM; Shier AP; Fragkopoulos IS; Carr J; Gajjar P; Muller FL
    Pharm Res; 2020 Oct; 37(12):231. PubMed ID: 33123816
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Drying process optimization for an API solvate using heat transfer model of an agitated filter dryer.
    Nere NK; Allen KC; Marek JC; Bordawekar SV
    J Pharm Sci; 2012 Oct; 101(10):3886-95. PubMed ID: 22753308
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Novel Computational Approach Coupled with Machine Learning to Predict the Extent of Agglomeration in Particulate Processes.
    Sinha K; Murphy E; Kumar P; Springer KA; Ho R; Nere NK
    AAPS PharmSciTech; 2021 Dec; 23(1):18. PubMed ID: 34904199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Influence of Equipment Design and Process Parameters on Granule Breakage in a Semi-Continuous Fluid Bed Dryer after Continuous Twin-Screw Wet Granulation.
    Ryckaert A; Ghijs M; Portier C; Djuric D; Funke A; Vervaet C; De Beer T
    Pharmaceutics; 2021 Feb; 13(2):. PubMed ID: 33672389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of new laboratory tools for assessment of granulation behavior during bulk active pharmaceutical ingredient drying.
    Zhang S; Lamberto DJ
    J Pharm Sci; 2014 Jan; 103(1):152-60. PubMed ID: 24338750
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Compact Device for the Integrated Filtration, Drying, and Mechanical Processing of Active Pharmaceutical Ingredients.
    Capellades G; Neurohr C; Azad M; Brancazio D; Rapp K; Hammersmith G; Myerson AS
    J Pharm Sci; 2020 Mar; 109(3):1365-1372. PubMed ID: 31866299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding API Static Drying with Hot Gas Flow: Design and Test of a Drying Rig Prototype and Drying Modeling Development.
    Ottoboni S; Coleman SJ; Steven C; Siddique M; Fraissinet M; Joannes M; Laux A; Barton A; Firth P; Price CJ; Mulheran PA
    Org Process Res Dev; 2020 Nov; 24(11):2505-2520. PubMed ID: 33250628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spray drying of API nanosuspensions: Importance of drying temperature, type and content of matrix former and particle size for successful formulation and process development.
    Czyz S; Wewers M; Finke JH; Kwade A; van Eerdenbrugh B; Juhnke M; Bunjes H
    Eur J Pharm Biopharm; 2020 Jul; 152():63-71. PubMed ID: 32376369
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational Modeling of Drying of Pharmaceutical Wet Granules in a Fluidized Bed Dryer Using Coupled CFD-DEM Approach.
    Aziz H; Ahsan SN; De Simone G; Gao Y; Chaudhuri B
    AAPS PharmSciTech; 2022 Jan; 23(1):59. PubMed ID: 35059893
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation of submicron drug particles via spray drying from organic solvents.
    Dobrowolski A; Strob R; Dräger-Gillessen JF; Pieloth D; Schaldach G; Wiggers H; Thommes M
    Int J Pharm; 2019 Aug; 567():118501. PubMed ID: 31288055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the Applicability of the Coarse Grained Coupled CFD-DEM Model to Predict the Heat Transfer During the Fluidized Bed Drying of Pharmaceutical Granules.
    Aziz H; Sansare S; Duran T; Gao Y; Chaudhuri B
    Pharm Res; 2022 Sep; 39(9):1991-2003. PubMed ID: 35986121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.