These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 36253796)

  • 1. An engineered non-oxidative glycolytic bypass based on Calvin-cycle enzymes enables anaerobic co-fermentation of glucose and sorbitol by Saccharomyces cerevisiae.
    van Aalst ACA; Mans R; Pronk JT
    Biotechnol Biofuels Bioprod; 2022 Oct; 15(1):112. PubMed ID: 36253796
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimizing anaerobic growth rate and fermentation kinetics in
    Papapetridis I; Goudriaan M; Vázquez Vitali M; de Keijzer NA; van den Broek M; van Maris AJA; Pronk JT
    Biotechnol Biofuels; 2018; 11():17. PubMed ID: 29416562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Co-cultivation of Saccharomyces cerevisiae strains combines advantages of different metabolic engineering strategies for improved ethanol yield.
    van Aalst ACA; van der Meulen IS; Jansen MLA; Mans R; Pronk JT
    Metab Eng; 2023 Nov; 80():151-162. PubMed ID: 37751790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantification and mitigation of byproduct formation by low-glycerol-producing Saccharomyces cerevisiae strains containing Calvin-cycle enzymes.
    van Aalst ACA; Jansen MLA; Mans R; Pronk JT
    Biotechnol Biofuels Bioprod; 2023 May; 16(1):81. PubMed ID: 37173767
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimizing the balance between heterologous acetate- and CO2-reduction pathways in anaerobic cultures of Saccharomyces cerevisiae strains engineered for low-glycerol production.
    van Aalst ACA; Geraats EH; Jansen MLA; Mans R; Pronk JT
    FEMS Yeast Res; 2023 Jan; 23():. PubMed ID: 37942589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon dioxide fixation by Calvin-Cycle enzymes improves ethanol yield in yeast.
    Guadalupe-Medina V; Wisselink HW; Luttik MA; de Hulster E; Daran JM; Pronk JT; van Maris AJ
    Biotechnol Biofuels; 2013 Aug; 6(1):125. PubMed ID: 23987569
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving ethanol yield in acetate-reducing Saccharomyces cerevisiae by cofactor engineering of 6-phosphogluconate dehydrogenase and deletion of ALD6.
    Papapetridis I; van Dijk M; Dobbe AP; Metz B; Pronk JT; van Maris AJ
    Microb Cell Fact; 2016 Apr; 15():67. PubMed ID: 27118055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The comprehensive profile of fermentation products during in situ CO2 recycling by Rubisco-based engineered Escherichia coli.
    Yang CH; Liu EJ; Chen YL; Ou-Yang FY; Li SY
    Microb Cell Fact; 2016 Aug; 15(1):133. PubMed ID: 27485110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: a proof of principle.
    Kuyper M; Winkler AA; van Dijken JP; Pronk JT
    FEMS Yeast Res; 2004 Mar; 4(6):655-64. PubMed ID: 15040955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering of Saccharomyces cerevisiae for efficient anaerobic alcoholic fermentation of L-arabinose.
    Wisselink HW; Toirkens MJ; del Rosario Franco Berriel M; Winkler AA; van Dijken JP; Pronk JT; van Maris AJ
    Appl Environ Microbiol; 2007 Aug; 73(15):4881-91. PubMed ID: 17545317
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering redox cofactor regeneration for improved pentose fermentation in Saccharomyces cerevisiae.
    Verho R; Londesborough J; Penttilä M; Richard P
    Appl Environ Microbiol; 2003 Oct; 69(10):5892-7. PubMed ID: 14532041
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fermentation of mixed glucose-xylose substrates by engineered strains of Saccharomyces cerevisiae: role of the coenzyme specificity of xylose reductase, and effect of glucose on xylose utilization.
    Krahulec S; Petschacher B; Wallner M; Longus K; Klimacek M; Nidetzky B
    Microb Cell Fact; 2010 Mar; 9():16. PubMed ID: 20219100
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exceeding the theoretical fermentation yield in mixotrophic Rubisco-based engineered Escherichia coli.
    Tseng IT; Chen YL; Chen CH; Shen ZX; Yang CH; Li SY
    Metab Eng; 2018 May; 47():445-452. PubMed ID: 29704653
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elimination of glycerol production in anaerobic cultures of a Saccharomyces cerevisiae strain engineered to use acetic acid as an electron acceptor.
    Guadalupe Medina V; Almering MJ; van Maris AJ; Pronk JT
    Appl Environ Microbiol; 2010 Jan; 76(1):190-5. PubMed ID: 19915031
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering NADH metabolism in Saccharomyces cerevisiae: formate as an electron donor for glycerol production by anaerobic, glucose-limited chemostat cultures.
    Geertman JM; van Dijken JP; Pronk JT
    FEMS Yeast Res; 2006 Dec; 6(8):1193-203. PubMed ID: 17156016
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering cofactor supply and NADH-dependent D-galacturonic acid reductases for redox-balanced production of L-galactonate in Saccharomyces cerevisiae.
    Harth S; Wagner J; Sens T; Choe JY; Benz JP; Weuster-Botz D; Oreb M
    Sci Rep; 2020 Nov; 10(1):19021. PubMed ID: 33149263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering a synthetic anaerobic respiration for reduction of xylose to xylitol using NADH output of glucose catabolism by Escherichia coli AI21.
    Iverson A; Garza E; Manow R; Wang J; Gao Y; Grayburn S; Zhou S
    BMC Syst Biol; 2016 Apr; 10():31. PubMed ID: 27083875
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The coupling of glycolysis and the Rubisco-based pathway through the non-oxidative pentose phosphate pathway to achieve low carbon dioxide emission fermentation.
    Li YH; Ou-Yang FY; Yang CH; Li SY
    Bioresour Technol; 2015; 187():189-197. PubMed ID: 25846189
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced xylose fermentation by engineered yeast expressing NADH oxidase through high cell density inoculums.
    Zhang GC; Turner TL; Jin YS
    J Ind Microbiol Biotechnol; 2017 Mar; 44(3):387-395. PubMed ID: 28070721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased expression of the oxidative pentose phosphate pathway and gluconeogenesis in anaerobically growing xylose-utilizing Saccharomyces cerevisiae.
    Runquist D; Hahn-Hägerdal B; Bettiga M
    Microb Cell Fact; 2009 Sep; 8():49. PubMed ID: 19778438
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.