BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 36253796)

  • 1. An engineered non-oxidative glycolytic bypass based on Calvin-cycle enzymes enables anaerobic co-fermentation of glucose and sorbitol by Saccharomyces cerevisiae.
    van Aalst ACA; Mans R; Pronk JT
    Biotechnol Biofuels Bioprod; 2022 Oct; 15(1):112. PubMed ID: 36253796
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimizing anaerobic growth rate and fermentation kinetics in
    Papapetridis I; Goudriaan M; Vázquez Vitali M; de Keijzer NA; van den Broek M; van Maris AJA; Pronk JT
    Biotechnol Biofuels; 2018; 11():17. PubMed ID: 29416562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Co-cultivation of Saccharomyces cerevisiae strains combines advantages of different metabolic engineering strategies for improved ethanol yield.
    van Aalst ACA; van der Meulen IS; Jansen MLA; Mans R; Pronk JT
    Metab Eng; 2023 Nov; 80():151-162. PubMed ID: 37751790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantification and mitigation of byproduct formation by low-glycerol-producing Saccharomyces cerevisiae strains containing Calvin-cycle enzymes.
    van Aalst ACA; Jansen MLA; Mans R; Pronk JT
    Biotechnol Biofuels Bioprod; 2023 May; 16(1):81. PubMed ID: 37173767
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimizing the balance between heterologous acetate- and CO2-reduction pathways in anaerobic cultures of Saccharomyces cerevisiae strains engineered for low-glycerol production.
    van Aalst ACA; Geraats EH; Jansen MLA; Mans R; Pronk JT
    FEMS Yeast Res; 2023 Jan; 23():. PubMed ID: 37942589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon dioxide fixation by Calvin-Cycle enzymes improves ethanol yield in yeast.
    Guadalupe-Medina V; Wisselink HW; Luttik MA; de Hulster E; Daran JM; Pronk JT; van Maris AJ
    Biotechnol Biofuels; 2013 Aug; 6(1):125. PubMed ID: 23987569
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving ethanol yield in acetate-reducing Saccharomyces cerevisiae by cofactor engineering of 6-phosphogluconate dehydrogenase and deletion of ALD6.
    Papapetridis I; van Dijk M; Dobbe AP; Metz B; Pronk JT; van Maris AJ
    Microb Cell Fact; 2016 Apr; 15():67. PubMed ID: 27118055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The comprehensive profile of fermentation products during in situ CO2 recycling by Rubisco-based engineered Escherichia coli.
    Yang CH; Liu EJ; Chen YL; Ou-Yang FY; Li SY
    Microb Cell Fact; 2016 Aug; 15(1):133. PubMed ID: 27485110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: a proof of principle.
    Kuyper M; Winkler AA; van Dijken JP; Pronk JT
    FEMS Yeast Res; 2004 Mar; 4(6):655-64. PubMed ID: 15040955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering of Saccharomyces cerevisiae for efficient anaerobic alcoholic fermentation of L-arabinose.
    Wisselink HW; Toirkens MJ; del Rosario Franco Berriel M; Winkler AA; van Dijken JP; Pronk JT; van Maris AJ
    Appl Environ Microbiol; 2007 Aug; 73(15):4881-91. PubMed ID: 17545317
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering redox cofactor regeneration for improved pentose fermentation in Saccharomyces cerevisiae.
    Verho R; Londesborough J; Penttilä M; Richard P
    Appl Environ Microbiol; 2003 Oct; 69(10):5892-7. PubMed ID: 14532041
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fermentation of mixed glucose-xylose substrates by engineered strains of Saccharomyces cerevisiae: role of the coenzyme specificity of xylose reductase, and effect of glucose on xylose utilization.
    Krahulec S; Petschacher B; Wallner M; Longus K; Klimacek M; Nidetzky B
    Microb Cell Fact; 2010 Mar; 9():16. PubMed ID: 20219100
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exceeding the theoretical fermentation yield in mixotrophic Rubisco-based engineered Escherichia coli.
    Tseng IT; Chen YL; Chen CH; Shen ZX; Yang CH; Li SY
    Metab Eng; 2018 May; 47():445-452. PubMed ID: 29704653
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elimination of glycerol production in anaerobic cultures of a Saccharomyces cerevisiae strain engineered to use acetic acid as an electron acceptor.
    Guadalupe Medina V; Almering MJ; van Maris AJ; Pronk JT
    Appl Environ Microbiol; 2010 Jan; 76(1):190-5. PubMed ID: 19915031
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering NADH metabolism in Saccharomyces cerevisiae: formate as an electron donor for glycerol production by anaerobic, glucose-limited chemostat cultures.
    Geertman JM; van Dijken JP; Pronk JT
    FEMS Yeast Res; 2006 Dec; 6(8):1193-203. PubMed ID: 17156016
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering cofactor supply and NADH-dependent D-galacturonic acid reductases for redox-balanced production of L-galactonate in Saccharomyces cerevisiae.
    Harth S; Wagner J; Sens T; Choe JY; Benz JP; Weuster-Botz D; Oreb M
    Sci Rep; 2020 Nov; 10(1):19021. PubMed ID: 33149263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering a synthetic anaerobic respiration for reduction of xylose to xylitol using NADH output of glucose catabolism by Escherichia coli AI21.
    Iverson A; Garza E; Manow R; Wang J; Gao Y; Grayburn S; Zhou S
    BMC Syst Biol; 2016 Apr; 10():31. PubMed ID: 27083875
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The coupling of glycolysis and the Rubisco-based pathway through the non-oxidative pentose phosphate pathway to achieve low carbon dioxide emission fermentation.
    Li YH; Ou-Yang FY; Yang CH; Li SY
    Bioresour Technol; 2015; 187():189-197. PubMed ID: 25846189
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced xylose fermentation by engineered yeast expressing NADH oxidase through high cell density inoculums.
    Zhang GC; Turner TL; Jin YS
    J Ind Microbiol Biotechnol; 2017 Mar; 44(3):387-395. PubMed ID: 28070721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased expression of the oxidative pentose phosphate pathway and gluconeogenesis in anaerobically growing xylose-utilizing Saccharomyces cerevisiae.
    Runquist D; Hahn-Hägerdal B; Bettiga M
    Microb Cell Fact; 2009 Sep; 8():49. PubMed ID: 19778438
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.