These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 36253803)

  • 1. Global early replication disrupts gene expression and chromatin conformation in a single cell cycle.
    Santos MM; Johnson MC; Fiedler L; Zegerman P
    Genome Biol; 2022 Oct; 23(1):217. PubMed ID: 36253803
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The budding yeast Fkh1 Forkhead associated (FHA) domain promotes a G1-chromatin state and the activity of chromosomal DNA replication origins.
    Hoggard T; Chacin E; Hollatz AJ; Kurat CF; Fox CA
    PLoS Genet; 2024 Aug; 20(8):e1011366. PubMed ID: 39102423
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nucleosome occupancy as a novel chromatin parameter for replication origin functions.
    Rodriguez J; Lee L; Lynch B; Tsukiyama T
    Genome Res; 2017 Feb; 27(2):269-277. PubMed ID: 27895110
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell-Cycle-Dependent Chromatin Dynamics at Replication Origins.
    Li Y; Hartemink AJ; MacAlpine DM
    Genes (Basel); 2021 Dec; 12(12):. PubMed ID: 34946946
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diversity of eukaryotic DNA replication origins revealed by genome-wide analysis of chromatin structure.
    Berbenetz NM; Nislow C; Brown GW
    PLoS Genet; 2010 Sep; 6(9):e1001092. PubMed ID: 20824081
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromatin structure restricts origin utilization when quiescent cells re-enter the cell cycle.
    Lee PH; Osley MA
    Nucleic Acids Res; 2021 Jan; 49(2):864-878. PubMed ID: 33367871
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Different nucleosomal architectures at early and late replicating origins in Saccharomyces cerevisiae.
    Soriano I; Morafraile EC; Vázquez E; Antequera F; Segurado M
    BMC Genomics; 2014 Sep; 15(1):791. PubMed ID: 25218085
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The activities of eukaryotic replication origins in chromatin.
    Weinreich M; Palacios DeBeer MA; Fox CA
    Biochim Biophys Acta; 2004 Mar; 1677(1-3):142-57. PubMed ID: 15020055
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A coordinated temporal interplay of nucleosome reorganization factor, sister chromatin cohesion factor, and DNA polymerase alpha facilitates DNA replication.
    Zhou Y; Wang TS
    Mol Cell Biol; 2004 Nov; 24(21):9568-79. PubMed ID: 15485923
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Establishment and function of chromatin organization at replication origins.
    Chacin E; Reusswig KU; Furtmeier J; Bansal P; Karl LA; Pfander B; Straub T; Korber P; Kurat CF
    Nature; 2023 Apr; 616(7958):836-842. PubMed ID: 37020028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Rpd3-Sin3 histone deacetylase regulates replication timing and enables intra-S origin control in Saccharomyces cerevisiae.
    Aparicio JG; Viggiani CJ; Gibson DG; Aparicio OM
    Mol Cell Biol; 2004 Jun; 24(11):4769-80. PubMed ID: 15143171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Link between ORC-origin binding mechanisms and origin activation time revealed in budding yeast.
    Hoggard T; Shor E; Müller CA; Nieduszynski CA; Fox CA
    PLoS Genet; 2013; 9(9):e1003798. PubMed ID: 24068963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Budding yeast Rif1 binds to replication origins and protects DNA at blocked replication forks.
    Hiraga SI; Monerawela C; Katou Y; Shaw S; Clark KR; Shirahige K; Donaldson AD
    EMBO Rep; 2018 Sep; 19(9):. PubMed ID: 30104203
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Replication timing regulation of eukaryotic replicons: Rif1 as a global regulator of replication timing.
    Yamazaki S; Hayano M; Masai H
    Trends Genet; 2013 Aug; 29(8):449-60. PubMed ID: 23809990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell cycle-dependent changes in H3K56ac in human cells.
    Stejskal S; Stepka K; Tesarova L; Stejskal K; Matejkova M; Simara P; Zdrahal Z; Koutna I
    Cell Cycle; 2015; 14(24):3851-63. PubMed ID: 26645646
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Localization of Cdc7 Protein Kinase During DNA Replication in
    Rossbach D; Bryan DS; Hesselberth JR; Sclafani R
    G3 (Bethesda); 2017 Nov; 7(11):3757-3774. PubMed ID: 28924058
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Replication timing is regulated by the number of MCMs loaded at origins.
    Das SP; Borrman T; Liu VW; Yang SC; Bechhoefer J; Rhind N
    Genome Res; 2015 Dec; 25(12):1886-92. PubMed ID: 26359232
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative BrdU immunoprecipitation method demonstrates that Fkh1 and Fkh2 are rate-limiting activators of replication origins that reprogram replication timing in G1 phase.
    Peace JM; Villwock SK; Zeytounian JL; Gan Y; Aparicio OM
    Genome Res; 2016 Mar; 26(3):365-75. PubMed ID: 26728715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Origin association of Sld3, Sld7, and Cdc45 proteins is a key step for determination of origin-firing timing.
    Tanaka S; Nakato R; Katou Y; Shirahige K; Araki H
    Curr Biol; 2011 Dec; 21(24):2055-63. PubMed ID: 22169533
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromatin-dependent and -independent regulation of DNA replication origin activation in budding yeast.
    Lõoke M; Kristjuhan K; Värv S; Kristjuhan A
    EMBO Rep; 2013 Feb; 14(2):191-8. PubMed ID: 23222539
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.