These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

612 related articles for article (PubMed ID: 36253861)

  • 1. The synthetic lethality of targeting cell cycle checkpoints and PARPs in cancer treatment.
    Li S; Wang L; Wang Y; Zhang C; Hong Z; Han Z
    J Hematol Oncol; 2022 Oct; 15(1):147. PubMed ID: 36253861
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cell cycle checkpoints and beyond: Exploiting the ATR/CHK1/WEE1 pathway for the treatment of PARP inhibitor-resistant cancer.
    Gupta N; Huang TT; Horibata S; Lee JM
    Pharmacol Res; 2022 Apr; 178():106162. PubMed ID: 35259479
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Restored replication fork stabilization, a mechanism of PARP inhibitor resistance, can be overcome by cell cycle checkpoint inhibition.
    Haynes B; Murai J; Lee JM
    Cancer Treat Rev; 2018 Dec; 71():1-7. PubMed ID: 30269007
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Poly(ADP-ribose) polymerase inhibition enhances p53-dependent and -independent DNA damage responses induced by DNA damaging agent.
    Nguyen D; Zajac-Kaye M; Rubinstein L; Voeller D; Tomaszewski JE; Kummar S; Chen AP; Pommier Y; Doroshow JH; Yang SX
    Cell Cycle; 2011 Dec; 10(23):4074-82. PubMed ID: 22101337
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Current and future landscape of poly (ADP-ribose) polymerase inhibition resistance.
    Hinchcliff E; Chelariu-Raicu A; Westin SN
    Curr Opin Obstet Gynecol; 2021 Feb; 33(1):19-25. PubMed ID: 33315700
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploiting replicative stress in gynecological cancers as a therapeutic strategy.
    Ngoi NY; Sundararajan V; Tan DS
    Int J Gynecol Cancer; 2020 Aug; 30(8):1224-1238. PubMed ID: 32571890
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The ATM-Chk2 and ATR-Chk1 pathways in DNA damage signaling and cancer.
    Smith J; Tho LM; Xu N; Gillespie DA
    Adv Cancer Res; 2010; 108():73-112. PubMed ID: 21034966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent advances in cancer therapy using PARP inhibitors.
    Kaur SD; Chellappan DK; Aljabali AA; Tambuwala M; Dua K; Kapoor DN
    Med Oncol; 2022 Sep; 39(12):241. PubMed ID: 36180646
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tousled-like kinases stabilize replication forks and show synthetic lethality with checkpoint and PARP inhibitors.
    Lee SB; Segura-Bayona S; Villamor-Payà M; Saredi G; Todd MAM; Attolini CS; Chang TY; Stracker TH; Groth A
    Sci Adv; 2018 Aug; 4(8):eaat4985. PubMed ID: 30101194
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolving DNA repair synthetic lethality targets in cancer.
    Kulkarni S; Brownlie J; Jeyapalan JN; Mongan NP; Rakha EA; Madhusudan S
    Biosci Rep; 2022 Dec; 42(12):. PubMed ID: 36420962
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeting PARP proteins in acute leukemia: DNA damage response inhibition and therapeutic strategies.
    Padella A; Ghelli Luserna Di Rorà A; Marconi G; Ghetti M; Martinelli G; Simonetti G
    J Hematol Oncol; 2022 Jan; 15(1):10. PubMed ID: 35065680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PARP Inhibition Increases the Reliance on ATR/CHK1 Checkpoint Signaling Leading to Synthetic Lethality-An Alternative Treatment Strategy for Epithelial Ovarian Cancer Cells Independent from HR Effectiveness.
    Gralewska P; Gajek A; Marczak A; Mikuła M; Ostrowski J; Śliwińska A; Rogalska A
    Int J Mol Sci; 2020 Dec; 21(24):. PubMed ID: 33352723
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Key Proteins of Replication Stress Response and Cell Cycle Control as Cancer Therapy Targets.
    Khamidullina AI; Abramenko YE; Bruter AV; Tatarskiy VV
    Int J Mol Sci; 2024 Jan; 25(2):. PubMed ID: 38279263
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Poly (ADP-ribose) polymerase inhibitors (PARPi) for advanced malignancies with multiple DNA-repair genetic aberrations.
    Hu J; Liang P; Jin D; Fan R; Xie X; Liu C; Jiang Q; Gao L
    Expert Rev Anticancer Ther; 2022 Jul; 22(7):717-723. PubMed ID: 35679134
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PARP and PARG inhibitors in cancer treatment.
    Slade D
    Genes Dev; 2020 Mar; 34(5-6):360-394. PubMed ID: 32029455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeting the replication stress response through synthetic lethal strategies in cancer medicine.
    Ngoi NYL; Pham MM; Tan DSP; Yap TA
    Trends Cancer; 2021 Oct; 7(10):930-957. PubMed ID: 34215565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeting DNA repair and replication stress in the treatment of ovarian cancer.
    Murai J
    Int J Clin Oncol; 2017 Aug; 22(4):619-628. PubMed ID: 28643177
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent advances in DDR (DNA damage response) inhibitors for cancer therapy.
    Cheng B; Pan W; Xing Y; Xiao Y; Chen J; Xu Z
    Eur J Med Chem; 2022 Feb; 230():114109. PubMed ID: 35051747
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Curcumin suppresses multiple DNA damage response pathways and has potency as a sensitizer to PARP inhibitor.
    Ogiwara H; Ui A; Shiotani B; Zou L; Yasui A; Kohno T
    Carcinogenesis; 2013 Nov; 34(11):2486-97. PubMed ID: 23825154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Moving From Poly (ADP-Ribose) Polymerase Inhibition to Targeting DNA Repair and DNA Damage Response in Cancer Therapy.
    Gourley C; Balmaña J; Ledermann JA; Serra V; Dent R; Loibl S; Pujade-Lauraine E; Boulton SJ
    J Clin Oncol; 2019 Sep; 37(25):2257-2269. PubMed ID: 31050911
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.