BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 36253905)

  • 1. Speech Perception Performance in Cochlear Implant Recipients Correlates to the Number and Synchrony of Excited Auditory Nerve Fibers Derived From Electrically Evoked Compound Action Potentials.
    Dong Y; Briaire JJ; Stronks HC; Frijns JHM
    Ear Hear; 2023 Mar-Apr 01; 44(2):276-286. PubMed ID: 36253905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unravelling the temporal properties of human eCAPs through an iterative deconvolution model.
    Dong Y; Briaire JJ; Biesheuvel JD; Stronks HC; Frijns JHM
    Hear Res; 2020 Sep; 395():108037. PubMed ID: 32827881
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Broadly Applicable Method for Characterizing the Slope of the Electrically Evoked Compound Action Potential Amplitude Growth Function.
    Skidmore J; Ramekers D; Colesa DJ; Schvartz-Leyzac KC; Pfingst BE; He S
    Ear Hear; 2022; 43(1):150-164. PubMed ID: 34241983
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Short- and long-latency components of the eCAP reveal different refractory properties.
    Dong Y; Briaire JJ; Christiaan Stronks H; Frijns JHM
    Hear Res; 2022 Jul; 420():108522. PubMed ID: 35617925
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Relationship Between Cochlear Implant Speech Perception Outcomes and Electrophysiological Measures of the Electrically Evoked Compound Action Potential.
    Skidmore J; Oleson JJ; Yuan Y; He S
    Ear Hear; 2023 Nov-Dec 01; 44(6):1485-1497. PubMed ID: 37194125
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An iterative deconvolution model to extract the temporal firing properties of the auditory nerve fibers in human eCAPs.
    Dong Y; Stronks HC; Briaire JJ; Frijns JHM
    MethodsX; 2021; 8():101240. PubMed ID: 34434763
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in the Electrically Evoked Compound Action Potential over time After Implantation and Subsequent Deafening in Guinea Pigs.
    Ramekers D; Benav H; Klis SFL; Versnel H
    J Assoc Res Otolaryngol; 2022 Dec; 23(6):721-738. PubMed ID: 35948695
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intraoperative Electrically Evoked Compound Action Potential Growth and Maximum Amplitudes in Hearing Preservation Cochlear Implant Recipients.
    Mussoi BS; Woodson E; Sydlowski S
    Otol Neurotol; 2023 Apr; 44(4):e216-e222. PubMed ID: 36946363
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The relation between auditory-nerve temporal responses and perceptual rate integration in cochlear implants.
    Hughes ML; Baudhuin JL; Goehring JL
    Hear Res; 2014 Oct; 316():44-56. PubMed ID: 25093283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes over time in the electrically evoked compound action potential (ECAP) interphase gap (IPG) effect following cochlear implantation in Guinea pigs.
    Schvartz-Leyzac KC; Colesa DJ; Buswinka CJ; Swiderski DL; Raphael Y; Pfingst BE
    Hear Res; 2019 Nov; 383():107809. PubMed ID: 31630082
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Across-site patterns of electrically evoked compound action potential amplitude-growth functions in multichannel cochlear implant recipients and the effects of the interphase gap.
    Schvartz-Leyzac KC; Pfingst BE
    Hear Res; 2016 Nov; 341():50-65. PubMed ID: 27521841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Systematic review of compound action potentials as predictors for cochlear implant performance.
    van Eijl RH; Buitenhuis PJ; Stegeman I; Klis SF; Grolman W
    Laryngoscope; 2017 Feb; 127(2):476-487. PubMed ID: 27804133
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Effect of Aging on Auditory Nerve Function: Insights from Intraoperative eCAP Recordings in Cochlear Implant Users.
    Mussoi BS; Woodson E; Sydlowski S
    Otol Neurotol; 2023 Jun; 44(5):447-452. PubMed ID: 37026816
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessing the Relationship Between the Electrically Evoked Compound Action Potential and Speech Recognition Abilities in Bilateral Cochlear Implant Recipients.
    Schvartz-Leyzac KC; Pfingst BE
    Ear Hear; 2018; 39(2):344-358. PubMed ID: 28885234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identifying Cochlear Implant Channels With Relatively Poor Electrode-Neuron Interfaces Using the Electrically Evoked Compound Action Potential.
    Jahn KN; Arenberg JG
    Ear Hear; 2020; 41(4):961-973. PubMed ID: 31972772
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrophysiological Estimates of the Electrode-Neuron Interface Differ Between Younger and Older Listeners With Cochlear Implants.
    Jahn KN; Arenberg JG
    Ear Hear; 2020; 41(4):948-960. PubMed ID: 32032228
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cochlear Implantation with the CI512 and CI532 Precurved Electrode Arrays: One-Year Speech Recognition and Intraoperative Thresholds of Electrically Evoked Compound Action Potentials.
    Videhult Pierre P; Eklöf M; Smeds H; Asp F
    Audiol Neurootol; 2019; 24(6):299-308. PubMed ID: 31846976
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Test/Retest Variability of the eCAP Threshold in Advanced Bionics Cochlear Implant Users.
    Stronks HC; Biesheuvel JD; de Vos JJ; Boot MS; Briaire JJ; Frijns JHM
    Ear Hear; 2019; 40(6):1457-1466. PubMed ID: 30946135
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SpeedCAP: An Efficient Method for Estimating Neural Activation Patterns Using Electrically Evoked Compound Action-Potentials in Cochlear Implant Users.
    Garcia C; Deeks JM; Goehring T; Borsetto D; Bance M; Carlyon RP
    Ear Hear; 2023 May-Jun 01; 44(3):627-640. PubMed ID: 36477611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of stimulus level on the temporal response properties of the auditory nerve in cochlear implants.
    Hughes ML; Laurello SA
    Hear Res; 2017 Aug; 351():116-129. PubMed ID: 28633960
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.