These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 36254112)

  • 41. Medicago truncatula mtpt4 mutants reveal a role for nitrogen in the regulation of arbuscule degeneration in arbuscular mycorrhizal symbiosis.
    Javot H; Penmetsa RV; Breuillin F; Bhattarai KK; Noar RD; Gomez SK; Zhang Q; Cook DR; Harrison MJ
    Plant J; 2011 Dec; 68(6):954-65. PubMed ID: 21848683
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Rice perception of symbiotic arbuscular mycorrhizal fungi requires the karrikin receptor complex.
    Gutjahr C; Gobbato E; Choi J; Riemann M; Johnston MG; Summers W; Carbonnel S; Mansfield C; Yang SY; Nadal M; Acosta I; Takano M; Jiao WB; Schneeberger K; Kelly KA; Paszkowski U
    Science; 2015 Dec; 350(6267):1521-4. PubMed ID: 26680197
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Phytohormones, miRNAs, and peptide signals integrate plant phosphorus status with arbuscular mycorrhizal symbiosis.
    Müller LM; Harrison MJ
    Curr Opin Plant Biol; 2019 Aug; 50():132-139. PubMed ID: 31212139
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The cis-acting CTTC-P1BS module is indicative for gene function of LjVTI12, a Qb-SNARE protein gene that is required for arbuscule formation in Lotus japonicus.
    Lota F; Wegmüller S; Buer B; Sato S; Bräutigam A; Hanf B; Bucher M
    Plant J; 2013 Apr; 74(2):280-93. PubMed ID: 23452278
    [TBL] [Abstract][Full Text] [Related]  

  • 45. How does phosphate status influence the development of the arbuscular mycorrhizal symbiosis?
    Gu M; Chen A; Dai X; Liu W; Xu G
    Plant Signal Behav; 2011 Sep; 6(9):1300-4. PubMed ID: 22019636
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Light-dependent activation of HY5 promotes mycorrhizal symbiosis in tomato by systemically regulating strigolactone biosynthesis.
    Ge S; He L; Jin L; Xia X; Li L; Ahammed GJ; Qi Z; Yu J; Zhou Y
    New Phytol; 2022 Feb; 233(4):1900-1914. PubMed ID: 34839530
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The negative regulator SMAX1 controls mycorrhizal symbiosis and strigolactone biosynthesis in rice.
    Choi J; Lee T; Cho J; Servante EK; Pucker B; Summers W; Bowden S; Rahimi M; An K; An G; Bouwmeester HJ; Wallington EJ; Oldroyd G; Paszkowski U
    Nat Commun; 2020 Apr; 11(1):2114. PubMed ID: 32355217
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The D3 F-box protein is a key component in host strigolactone responses essential for arbuscular mycorrhizal symbiosis.
    Yoshida S; Kameoka H; Tempo M; Akiyama K; Umehara M; Yamaguchi S; Hayashi H; Kyozuka J; Shirasu K
    New Phytol; 2012 Dec; 196(4):1208-1216. PubMed ID: 23025475
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The membrane proteome of Medicago truncatula roots displays qualitative and quantitative changes in response to arbuscular mycorrhizal symbiosis.
    Abdallah C; Valot B; Guillier C; Mounier A; Balliau T; Zivy M; van Tuinen D; Renaut J; Wipf D; Dumas-Gaudot E; Recorbet G
    J Proteomics; 2014 Aug; 108():354-68. PubMed ID: 24925269
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Evaluation of the Role of the LysM Receptor-Like Kinase, OsNFR5/OsRLK2 for AM Symbiosis in Rice.
    Miyata K; Hayafune M; Kobae Y; Kaku H; Nishizawa Y; Masuda Y; Shibuya N; Nakagawa T
    Plant Cell Physiol; 2016 Nov; 57(11):2283-2290. PubMed ID: 27519312
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Localized expression of the
    Sisaphaithong T; Yanase M; Mano T; Tanabe S; Minami E; Tanaka A; Hata S; Kobae Y
    Plant Signal Behav; 2021 Dec; 16(12):2009998. PubMed ID: 34904518
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A SPX domain-containing phosphate transporter from Rhizophagus irregularis handles phosphate homeostasis at symbiotic interface of arbuscular mycorrhizas.
    Xie X; Lai W; Che X; Wang S; Ren Y; Hu W; Chen H; Tang M
    New Phytol; 2022 Apr; 234(2):650-671. PubMed ID: 35037255
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Phosphorus and nitrogen regulate arbuscular mycorrhizal symbiosis in Petunia hybrida.
    Nouri E; Breuillin-Sessoms F; Feller U; Reinhardt D
    PLoS One; 2014; 9(6):e90841. PubMed ID: 24608923
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Arbuscular mycorrhizal fungi differ in their ability to regulate the expression of phosphate transporters in maize (Zea mays L.).
    Tian H; Drijber RA; Li X; Miller DN; Wienhold BJ
    Mycorrhiza; 2013 Aug; 23(6):507-14. PubMed ID: 23467773
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The characterization of six auxin-induced tomato GH3 genes uncovers a member, SlGH3.4, strongly responsive to arbuscular mycorrhizal symbiosis.
    Liao D; Chen X; Chen A; Wang H; Liu J; Liu J; Gu M; Sun S; Xu G
    Plant Cell Physiol; 2015 Apr; 56(4):674-87. PubMed ID: 25535196
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Integrative Comparison of the Role of the PHOSPHATE RESPONSE1 Subfamily in Phosphate Signaling and Homeostasis in Rice.
    Guo M; Ruan W; Li C; Huang F; Zeng M; Liu Y; Yu Y; Ding X; Wu Y; Wu Z; Mao C; Yi K; Wu P; Mo X
    Plant Physiol; 2015 Aug; 168(4):1762-76. PubMed ID: 26082401
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A novel gene whose expression in Medicago truncatula roots is suppressed in response to colonization by vesicular-arbuscular mycorrhizal (VAM) fungi and to phosphate nutrition.
    Burleigh SH; Harrison MJ
    Plant Mol Biol; 1997 May; 34(2):199-208. PubMed ID: 9207836
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Signaling events during initiation of arbuscular mycorrhizal symbiosis.
    Schmitz AM; Harrison MJ
    J Integr Plant Biol; 2014 Mar; 56(3):250-61. PubMed ID: 24386977
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Medicago AP2-Domain Transcription Factor WRI5a Is a Master Regulator of Lipid Biosynthesis and Transfer during Mycorrhizal Symbiosis.
    Jiang Y; Xie Q; Wang W; Yang J; Zhang X; Yu N; Zhou Y; Wang E
    Mol Plant; 2018 Nov; 11(11):1344-1359. PubMed ID: 30292683
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The bifunctional plant receptor, OsCERK1, regulates both chitin-triggered immunity and arbuscular mycorrhizal symbiosis in rice.
    Miyata K; Kozaki T; Kouzai Y; Ozawa K; Ishii K; Asamizu E; Okabe Y; Umehara Y; Miyamoto A; Kobae Y; Akiyama K; Kaku H; Nishizawa Y; Shibuya N; Nakagawa T
    Plant Cell Physiol; 2014 Nov; 55(11):1864-72. PubMed ID: 25231970
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.