These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
228 related articles for article (PubMed ID: 36254342)
1. Explicit memory, anxiety and depressive like behavior in mice exposed to chronic intermittent hypoxia, sleep fragmentation, or both during the daylight period. Puech C; Badran M; Runion AR; Barrow MB; Qiao Z; Khalyfa A; Gozal D Neurobiol Sleep Circadian Rhythms; 2022 Nov; 13():100084. PubMed ID: 36254342 [TBL] [Abstract][Full Text] [Related]
2. Solriamfetol enhances wakefulness and improves cognition and anxiety in a murine model of OSA. Badran M; Puech C; Barrow MB; Runion AR; Gozal D Sleep Med; 2023 Jul; 107():89-99. PubMed ID: 37137196 [TBL] [Abstract][Full Text] [Related]
3. Recovery Mimicking "Ideal" CPAP Adherence Does Not Improve Wakefulness or Cognition in Chronic Murine Models of OSA: Effect of Wake-Promoting Agents. Badran M; Puech C; Barrow MB; Runion AR; Gozal D Arch Bronconeumol; 2023 Dec; 59(12):805-812. PubMed ID: 37783638 [TBL] [Abstract][Full Text] [Related]
4. Cognitive Impairments, Neuroinflammation and Blood-Brain Barrier Permeability in Mice Exposed to Chronic Sleep Fragmentation during the Daylight Period. Puech C; Badran M; Runion AR; Barrow MB; Cataldo K; Gozal D Int J Mol Sci; 2023 Jun; 24(12):. PubMed ID: 37373028 [TBL] [Abstract][Full Text] [Related]
5. Dim light at night interacts with intermittent hypoxia to alter cognitive and affective responses. Aubrecht TG; Weil ZM; Magalang UJ; Nelson RJ Am J Physiol Regul Integr Comp Physiol; 2013 Jul; 305(1):R78-86. PubMed ID: 23657638 [TBL] [Abstract][Full Text] [Related]
6. Solriamfetol improves chronic sleep fragmentation-induced increases in sleep propensity and ameliorates explicit memory in male mice. Puech C; Badran M; Barrow MB; Runion AR; Gozal D Sleep; 2023 May; 46(5):. PubMed ID: 36866452 [TBL] [Abstract][Full Text] [Related]
7. Cognitive Deficits Are Attenuated in Neuroglobin Overexpressing Mice Exposed to a Model of Obstructive Sleep Apnea. Nair D; Ramesh V; Gozal D Front Neurol; 2018; 9():426. PubMed ID: 29922222 [No Abstract] [Full Text] [Related]
8. Chronic Intermittent Hypoxia during Sleep Causes Browning of Interscapular Adipose Tissue Accompanied by Local Insulin Resistance in Mice. Dahan T; Nassar S; Yajuk O; Steinberg E; Benny O; Abudi N; Plaschkes I; Benyamini H; Gozal D; Abramovitch R; Gileles-Hillel A Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555109 [TBL] [Abstract][Full Text] [Related]
9. Intermittent Hypoxia Activates N-Methyl-D-Aspartate Receptors to Induce Anxiety Behaviors in a Mouse Model of Sleep-Associated Apnea. Fan Y; Chou MC; Liu YC; Liu CK; Chen CH; Chen SL Mol Neurobiol; 2021 Jul; 58(7):3238-3251. PubMed ID: 33660202 [TBL] [Abstract][Full Text] [Related]
10. Fecal microbiota transplantation from mice exposed to chronic intermittent hypoxia elicits sleep disturbances in naïve mice. Badran M; Khalyfa A; Ericsson A; Gozal D Exp Neurol; 2020 Dec; 334():113439. PubMed ID: 32835671 [TBL] [Abstract][Full Text] [Related]
11. Influence of gonadal hormones on the behavioral effects of intermittent hypoxia in mice. Aubrecht TG; Jenkins R; Magalang UJ; Nelson RJ Am J Physiol Regul Integr Comp Physiol; 2015 Mar; 308(6):R489-99. PubMed ID: 25552660 [TBL] [Abstract][Full Text] [Related]
12. Intermittent hypoxia causes REM sleep deficits and decreases EEG delta power in NREM sleep in the C57BL/6J mouse. Polotsky VY; Rubin AE; Balbir A; Dean T; Smith PL; Schwartz AR; O'Donnell CP Sleep Med; 2006 Jan; 7(1):7-16. PubMed ID: 16309961 [TBL] [Abstract][Full Text] [Related]
13. Exogenous erythropoietin administration attenuates intermittent hypoxia-induced cognitive deficits in a murine model of sleep apnea. Dayyat EA; Zhang SX; Wang Y; Cheng ZJ; Gozal D BMC Neurosci; 2012 Jul; 13():77. PubMed ID: 22759774 [TBL] [Abstract][Full Text] [Related]
14. Intermittent hypoxia-induced cognitive deficits are mediated by NADPH oxidase activity in a murine model of sleep apnea. Nair D; Dayyat EA; Zhang SX; Wang Y; Gozal D PLoS One; 2011; 6(5):e19847. PubMed ID: 21625437 [TBL] [Abstract][Full Text] [Related]
15. Spatial learning and memory deficits following exposure to 24 h of sleep fragmentation or intermittent hypoxia in a rat model of obstructive sleep apnea. Ward CP; McCoy JG; McKenna JT; Connolly NP; McCarley RW; Strecker RE Brain Res; 2009 Oct; 1294():128-37. PubMed ID: 19643093 [TBL] [Abstract][Full Text] [Related]
17. Effects of chronic intermittent hypoxia caused by obstructive sleep apnea on lipopolysaccharide-induced acute lung injury. Kim SW; Kim IK; Yeo CD; Kang HH; Ban WH; Kwon HY; Lee SH Exp Lung Res; 2020 Nov; 46(9):341-351. PubMed ID: 32791028 [TBL] [Abstract][Full Text] [Related]
18. Hippocampal impairments are associated with intermittent hypoxia of obstructive sleep apnea. Feng J; Wu Q; Zhang D; Chen BY Chin Med J (Engl); 2012 Feb; 125(4):696-701. PubMed ID: 22490498 [TBL] [Abstract][Full Text] [Related]
19. Growth hormone releasing hormone (GHRH) signaling modulates intermittent hypoxia-induced oxidative stress and cognitive deficits in mouse. Nair D; Ramesh V; Li RC; Schally AV; Gozal D J Neurochem; 2013 Nov; 127(4):531-40. PubMed ID: 23815362 [TBL] [Abstract][Full Text] [Related]
20. Temporal changes in coronary artery function and flow velocity reserve in mice exposed to chronic intermittent hypoxia. Badran M; Bender SB; Khalyfa A; Padilla J; Martinez-Lemus LA; Gozal D Sleep; 2022 Sep; 45(9):. PubMed ID: 35661901 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]