These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 36254469)

  • 1. Catch Effectiveness Revealed by Site-Related Differences in Capture-Mark-Recapture Methods: A Butterfly Metapopulation Study.
    Adamski P
    Environ Entomol; 2022 Dec; 51(6):1234-1240. PubMed ID: 36254469
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lesions in the wingless gene of the Apollo butterfly (Parnassius apollo, Lepidoptera: Papilionidae) individuals with deformed or reduced wings, coming from the isolated population in Pieniny (Poland).
    Łukasiewicz K; Sanak M; Węgrzyn G
    Gene; 2016 Feb; 576(2 Pt 2):820-2. PubMed ID: 26581509
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes is genes coding for laccases 1 and 2 may contribute to deformation and reduction of wings in apollo butterfly (Parnassius apollo, Lepidoptera: Papilionidae) from the isolated population in Pieniny National Park (Poland).
    Łukasiewicz K; Węgrzyn G
    Acta Biochim Pol; 2016; 63(1):177-180. PubMed ID: 26523407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple factors correlating with wing malformations in the population of Parnassius apollo (Lepidoptera: Papilionidae) restituted from a low number of individuals: A mini review.
    Pierzynowska K; Skowron Volponi M; Węgrzyn G
    Insect Sci; 2019 Jun; 26(3):380-387. PubMed ID: 29094498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A lack of Wolbachia-specific DNA in samples from apollo butterfly (Parnassius apollo, Lepidoptera: Papilionidae) individuals with deformed or reduced wings.
    Łukasiewicz K; Sanak M; Węgrzyn G
    J Appl Genet; 2016 May; 57(2):271-4. PubMed ID: 26423782
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feeding preferences of the Apollo butterfly (Parnassius apollo ssp. frankenbergeri) larvae inhabiting the Pieniny Mts (southern Poland).
    Nakonieczny M; Kedziorski A
    C R Biol; 2005 Mar; 328(3):235-42. PubMed ID: 15810547
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intraseasonal asynchrony as a factor boosting isolation within a metapopulation: The case of the clouded apollo.
    Adamski P; Ćmiel AM; Lipińska AM
    Insect Sci; 2019 Oct; 26(5):911-922. PubMed ID: 29573160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Weather explains high annual variation in butterfly dispersal.
    Kuussaari M; Rytteri S; Heikkinen RK; Heliölä J; von Bagh P
    Proc Biol Sci; 2016 Jul; 283(1835):. PubMed ID: 27440662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Genome Assembly and Annotation of the Apollo Butterfly Parnassius apollo, a Flagship Species for Conservation Biology.
    Podsiadlowski L; Tunström K; Espeland M; Wheat CW
    Genome Biol Evol; 2021 Aug; 13(8):. PubMed ID: 34115121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Chromosome-Level Genome Assembly and Annotation for the Clouded Apollo Butterfly (Parnassius mnemosyne): A Species of Global Conservation Concern.
    Höglund J; Dias G; Olsen RA; Soares A; Bunikis I; Talla V; Backström N
    Genome Biol Evol; 2024 Feb; 16(2):. PubMed ID: 38368625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determining optimal population monitoring for rare butterflies.
    Haddad NM; Hudgens B; Damiani C; Gross K; Kuefler D; Pollock K
    Conserv Biol; 2008 Aug; 22(4):929-40. PubMed ID: 18477025
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Midgut protease activities in monophagous larvae of Apollo butterfly, Parnassius apollo ssp. frankenbergeri.
    Nakonieczny M; Michalczyk K; Kedziorski A
    C R Biol; 2007 Feb; 330(2):126-34. PubMed ID: 17303539
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Midgut glycosidases activities in monophagous larvae of Apollo butterfly, Parnassius apollo ssp. frankenbergeri.
    Nakonieczny M; Michalczyk K; Kedziorski A
    C R Biol; 2006 Oct; 329(10):765-74. PubMed ID: 17027637
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Roads affect the spatial structure of butterfly communities in grassland patches.
    Skórka P; Lenda M; Moroń D
    PeerJ; 2018; 6():e5413. PubMed ID: 30128196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Demographic inferences and climatic niche modelling shed light on the evolutionary history of the emblematic cold-adapted Apollo butterfly at regional scale.
    Kebaïli C; Sherpa S; Rioux D; Després L
    Mol Ecol; 2022 Jan; 31(2):448-466. PubMed ID: 34687582
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monitoring butterfly abundance: beyond Pollard walks.
    Pellet J; Bried JT; Parietti D; Gander A; Heer PO; Cherix D; Arlettaz R
    PLoS One; 2012; 7(7):e41396. PubMed ID: 22859980
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metapopulation dynamics in the butterfly Hipparchia semele changed decades before occupancy declined in The Netherlands.
    Van Strien AJ; Van Swaay CA; Kéry M
    Ecol Appl; 2011 Oct; 21(7):2510-20. PubMed ID: 22073640
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimating dispersal in spatiotemporally variable environments using multievent capture-recapture modeling.
    Cayuela H; Pradel R; Joly P; Bonnaire E; Besnard A
    Ecology; 2018 May; 99(5):1150-1163. PubMed ID: 29460431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rhabdom evolution in butterflies: insights from the uniquely tiered and heterogeneous ommatidia of the Glacial Apollo butterfly, Parnassius glacialis.
    Matsushita A; Awata H; Wakakuwa M; Takemura SY; Arikawa K
    Proc Biol Sci; 2012 Sep; 279(1742):3482-90. PubMed ID: 22628477
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [The phylogeny of 5 Chinese peculiar Parnassius butterflies using noninvasive sampling mtDNA sequences].
    Chen YJ; Zhang YP; Shen FR; Zhang YW; Yang DR; Nie L; Yang YX
    Yi Chuan Xue Bao; 1999; 26(3):203-7. PubMed ID: 10589158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.