BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 36254669)

  • 1. Bioprinting-based automated deposition of single cancer cell spheroids into oxygen sensor microelectrode wells.
    Dornhof J; Zieger V; Kieninger J; Frejek D; Zengerle R; Urban GA; Kartmann S; Weltin A
    Lab Chip; 2022 Nov; 22(22):4369-4381. PubMed ID: 36254669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accessing 3D microtissue metabolism: Lactate and oxygen monitoring in hepatocyte spheroids.
    Weltin A; Hammer S; Noor F; Kaminski Y; Kieninger J; Urban GA
    Biosens Bioelectron; 2017 Jan; 87():941-948. PubMed ID: 27665516
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Laser-based 3D bioprinting for spatial and size control of tumor spheroids and embryoid bodies.
    Kingsley DM; Roberge CL; Rudkouskaya A; Faulkner DE; Barroso M; Intes X; Corr DT
    Acta Biomater; 2019 Sep; 95():357-370. PubMed ID: 30776506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generation of 3D Spheroids Using a Thiol-Acrylate Hydrogel Scaffold to Study Endocrine Response in ER
    Khan AH; Zhou SP; Moe M; Ortega Quesada BA; Bajgiran KR; Lassiter HR; Dorman JA; Martin EC; Pojman JA; Melvin AT
    ACS Biomater Sci Eng; 2022 Sep; 8(9):3977-3985. PubMed ID: 36001134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent advances in microarray 3D bioprinting for high-throughput spheroid and tissue culture and analysis.
    Shrestha S; Lekkala VKR; Acharya P; Siddhpura D; Lee MY
    Essays Biochem; 2021 Aug; 65(3):481-489. PubMed ID: 34296737
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic organ-on-chip system for multi-analyte monitoring of metabolites in 3D cell cultures.
    Dornhof J; Kieninger J; Muralidharan H; Maurer J; Urban GA; Weltin A
    Lab Chip; 2022 Jan; 22(2):225-239. PubMed ID: 34851349
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid spheroid clearing on a microfluidic chip.
    Silva Santisteban T; Rabajania O; Kalinina I; Robinson S; Meier M
    Lab Chip; 2017 Dec; 18(1):153-161. PubMed ID: 29192297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large-Scale, Automated Production of Adipose-Derived Stem Cell Spheroids for 3D Bioprinting.
    Kronemberger GS; Miranda GASC; Silva TIG; Gonçalves RM; Granjeiro JM; Baptista LS
    J Vis Exp; 2022 Mar; (181):. PubMed ID: 35435900
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of different methodologies for primary human dermal fibroblast spheroid formation: automation through 3D bioprinting technology.
    Quílez C; Cerdeira E; González-Rico J; de Aranda G; López-Donaire ML; Jorcano JL; Velasco D
    Biomed Mater; 2022 Jul; 17(5):. PubMed ID: 35724647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uniform sized cancer spheroids production using hydrogel-based droplet microfluidics: a review.
    Kim S; Lam PY; Jayaraman A; Han A
    Biomed Microdevices; 2024 May; 26(2):26. PubMed ID: 38806765
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D Printed Solutions for Spheroid Engineering and Cancer Research.
    Butelmann T; Gu Y; Li A; Tribukait-Riemenschneider F; Hoffmann J; Molazem A; Jaeger E; Pellegrini D; Forget A; Shastri VP
    Int J Mol Sci; 2022 Jul; 23(15):. PubMed ID: 35897762
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell spheroids as a versatile research platform: formation mechanisms, high throughput production, characterization and applications.
    Decarli MC; Amaral R; Santos DPD; Tofani LB; Katayama E; Rezende RA; Silva JVLD; Swiech K; Suazo CAT; Mota C; Moroni L; Moraes ÂM
    Biofabrication; 2021 Apr; 13(3):. PubMed ID: 33592595
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid Production and Recovery of Cell Spheroids by Automated Droplet Microfluidics.
    Langer K; Joensson HN
    SLAS Technol; 2020 Apr; 25(2):111-122. PubMed ID: 31561747
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Consistent and reproducible cultures of large-scale 3D mammary epithelial structures using an accessible bioprinting platform.
    Reid JA; Mollica PA; Bruno RD; Sachs PC
    Breast Cancer Res; 2018 Oct; 20(1):122. PubMed ID: 30305139
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Variety of 3D Breast Cancer Models for the Study of Tumor Physiology and Drug Screening.
    Fröhlich E
    Int J Mol Sci; 2023 Apr; 24(8):. PubMed ID: 37108283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aspiration-assisted bioprinting of co-cultured osteogenic spheroids for bone tissue engineering.
    Heo DN; Ayan B; Dey M; Banerjee D; Wee H; Lewis GS; Ozbolat IT
    Biofabrication; 2020 Dec; 13(1):. PubMed ID: 33059343
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Digital microfluidics for automated hanging drop cell spheroid culture.
    Aijian AP; Garrell RL
    J Lab Autom; 2015 Jun; 20(3):283-95. PubMed ID: 25510471
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large scale production and controlled deposition of single HUVEC spheroids for bioprinting applications.
    Gutzweiler L; Kartmann S; Troendle K; Benning L; Finkenzeller G; Zengerle R; Koltay P; Stark GB; Zimmermann S
    Biofabrication; 2017 Jun; 9(2):025027. PubMed ID: 28488594
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Facile and Scalable Hydrogel Patterning Method for Microfluidic 3D Cell Culture and Spheroid-in-Gel Culture Array.
    Su C; Chuah YJ; Ong HB; Tay HM; Dalan R; Hou HW
    Biosensors (Basel); 2021 Dec; 11(12):. PubMed ID: 34940266
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strategies for 3D bioprinting of spheroids: A comprehensive review.
    Banerjee D; Singh YP; Datta P; Ozbolat V; O'Donnell A; Yeo M; Ozbolat IT
    Biomaterials; 2022 Dec; 291():121881. PubMed ID: 36335718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.