BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 36254754)

  • 1. Simplified hybrids of two anticancer bistetrahydroisoquinoline alkaloids ecteinascidin 743 and cribrostatin 4 and inhibitory activity against proliferation of cancer cells.
    Wang M; Yu BB; Yao ZJ
    Org Biomol Chem; 2022 Nov; 20(43):8438-8442. PubMed ID: 36254754
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and cytotoxic evaluation of some cribrostatin-ecteinascidin analogues.
    Wright BJ; Chan C; Danishefsky SJ
    J Nat Prod; 2008 Mar; 71(3):409-14. PubMed ID: 18278868
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of Cyclic
    Wang M; Wang T; Qin X; Yao ZJ
    Org Lett; 2024 Mar; 26(9):1764-1769. PubMed ID: 38407113
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and cytotoxicity of a novel series of saframycin-ecteinascidin analogs containing tetrahydro-β-carboline moieties.
    Lu X; Pan X; Yang Y; Ji M; Chen X; Xiao Z; Liu Z
    Eur J Med Chem; 2017 Jul; 135():260-269. PubMed ID: 28456034
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent advances in the synthesis and activity of analogues of bistetrahydroisoquinoline alkaloids as antitumor agents.
    Guo J
    Eur J Med Chem; 2023 Dec; 262():115917. PubMed ID: 37925762
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design, synthesis, and biological evaluation of simplified tetrahydroisoquinoline analogs.
    Yang Y; Gao Y; Chen S; Guo J; Hu Y
    Arch Pharm (Weinheim); 2023 Dec; 356(12):e2300453. PubMed ID: 37814371
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel tetrahydroisoquinoline (THIQ) analogue induces mitochondria-dependent apoptosis.
    Sun X; Liu M; Gao L; Mao Y; Zhao D; Zhuang J; Liu L
    Eur J Med Chem; 2018 Apr; 150():719-728. PubMed ID: 29573707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and evaluation of novel marine bromopyrrole alkaloid-based hybrids as anticancer agents.
    Rane RA; Sahu NU; Gutte SD; Mahajan AA; Shah CP; Bangalore P
    Eur J Med Chem; 2013 May; 63():793-9. PubMed ID: 23584542
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Renieramycin J, a highly cytotoxic tetrahydroisoquinoline alkaloid, from a marine sponge Neopetrosia sp.
    Oku N; Matsunaga S; van Soest RW; Fusetani N
    J Nat Prod; 2003 Aug; 66(8):1136-9. PubMed ID: 12932144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antitumor activity of tetrahydroisoquinoline analogues 3-epi-jorumycin and 3-epi-renieramycin G.
    Lane JW; Estevez A; Mortara K; Callan O; Spencer JR; Williams RM
    Bioorg Med Chem Lett; 2006 Jun; 16(12):3180-3. PubMed ID: 16632360
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design, synthesis, and biological evaluation of potent 1,2,3,4-tetrahydroisoquinoline derivatives as anticancer agents targeting NF-κB signaling pathway.
    Sim S; Lee S; Ko S; Phuong Bui B; Linh Nguyen P; Cho J; Lee K; Kang JS; Jung JK; Lee H
    Bioorg Med Chem; 2021 Sep; 46():116371. PubMed ID: 34500188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and cytotoxicity of 3-aryl acrylic amide derivatives of the simplified saframycin-ecteinascidin skeleton prepared from L-dopa.
    Guo J; Dong W; Liu W; Yan Z; Wang N; Liu Z
    Eur J Med Chem; 2013 Apr; 62():670-6. PubMed ID: 23434640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ecteinascidins. A review of the chemistry, biology and clinical utility of potent tetrahydroisoquinoline antitumor antibiotics.
    Le VH; Inai M; Williams RM; Kan T
    Nat Prod Rep; 2015 Feb; 32(2):328-47. PubMed ID: 25273374
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of tetrahydroisoquinoline-based hydroxamic acid derivatives: potent histone deacetylase inhibitors with marked in vitro and in vivo antitumor activities.
    Zhang Y; Feng J; Jia Y; Wang X; Zhang L; Liu C; Fang H; Xu W
    J Med Chem; 2011 Apr; 54(8):2823-38. PubMed ID: 21476600
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Renieramycin-type alkaloids from marine-derived organisms: Synthetic chemistry, biological activity and structural modification.
    Fang Y; Li H; Ji B; Cheng K; Wu B; Li Z; Zheng C; Hua H; Li D
    Eur J Med Chem; 2021 Jan; 210():113092. PubMed ID: 33333398
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and inhibition of cancer cell proliferation of (1,3')-bis-tetrahydroisoquinolines and piperazine systems.
    Aubry S; Pellet-Rostaing S; Fournier Dit Chabert J; Ducki S; Lemaire M
    Bioorg Med Chem Lett; 2007 May; 17(9):2598-602. PubMed ID: 17317166
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advances in the 1-phenanthryl-tetrahydroisoquinoline series of PAK4 inhibitors: potent agents restrain tumor cell growth and invasion.
    Hao C; Li X; Song S; Guo B; Guo J; Zhang J; Zhang Q; Huang W; Wang J; Lin B; Cheng M; Li F; Zhao D
    Org Biomol Chem; 2016 Aug; 14(32):7676-90. PubMed ID: 27454186
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and Cytotoxic Activity of Novel Mono- and Bis-Indole Derivatives: Analogues of Marine Alkaloid Nortopsentin.
    Kamel MM; Abdel-Hameid MK; El-Nassan HB; El-Khouly EA
    Med Chem; 2021; 17(7):779-789. PubMed ID: 32386499
    [TBL] [Abstract][Full Text] [Related]  

  • 19. (±)-trans-Dihydronarciclasine and (±)-trans-dihydrolycoricidine analogues modified in their ring A: Evaluation of their anticancer activity and a SAR study.
    Varró G; Pálchuber P; Pogrányi B; Simon A; Hegedűs L; Kádas I
    Eur J Med Chem; 2019 Jul; 173():76-89. PubMed ID: 30986573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trabectedin: Ecteinascidin 743, Ecteinascidin-743, ET 743, ET-743, NSC 684766.
    Drugs R D; 2006; 7(5):317-28. PubMed ID: 16922593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.