BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 36255632)

  • 1. Assessing the Effect of Histone Deacetylase Inhibitors on DNA Double-Strand Break Repair by Nonhomologous End Joining.
    Krämer OH; Diehl T; Roos WP
    Methods Mol Biol; 2023; 2589():293-302. PubMed ID: 36255632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing the Effect of Class I Histone Deacetylase Activity on DNA Double-Strand Break Repair by Homologous Recombination.
    Krumm A; Roos WP
    Methods Mol Biol; 2017; 1510():115-123. PubMed ID: 27761817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The multifaceted influence of histone deacetylases on DNA damage signalling and DNA repair.
    Roos WP; Krumm A
    Nucleic Acids Res; 2016 Dec; 44(21):10017-10030. PubMed ID: 27738139
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Class I histone deacetylase inhibitors inhibit the retention of BRCA1 and 53BP1 at the site of DNA damage.
    Fukuda T; Wu W; Okada M; Maeda I; Kojima Y; Hayami R; Miyoshi Y; Tsugawa K; Ohta T
    Cancer Sci; 2015 Aug; 106(8):1050-6. PubMed ID: 26053117
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NHEJ Contributes to the Fast Repair of Radiation-induced DNA Double-strand Breaks at Late Prophase I Telomeres.
    Ahmed EA; Rosemann M; Scherthan H
    Health Phys; 2018 Jul; 115(1):102-107. PubMed ID: 29787435
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of histone deacetylases enhances DNA damage repair in SCNT embryos.
    Bohrer RC; Duggavathi R; Bordignon V
    Cell Cycle; 2014; 13(13):2138-48. PubMed ID: 24841373
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increasing CRISPR/Cas9-mediated homology-directed DNA repair by histone deacetylase inhibitors.
    Li G; Zhang X; Wang H; Liu D; Li Z; Wu Z; Yang H
    Int J Biochem Cell Biol; 2020 Aug; 125():105790. PubMed ID: 32534122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Histone deacetylase inhibitors decrease NHEJ both by acetylation of repair factors and trapping of PARP1 at DNA double-strand breaks in chromatin.
    Robert C; Nagaria PK; Pawar N; Adewuyi A; Gojo I; Meyers DJ; Cole PA; Rassool FV
    Leuk Res; 2016 Jun; 45():14-23. PubMed ID: 27064363
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Repair of DNA Double-Strand Breaks by the Nonhomologous End Joining Pathway.
    Stinson BM; Loparo JJ
    Annu Rev Biochem; 2021 Jun; 90():137-164. PubMed ID: 33556282
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pharmacological methods to transcriptionally modulate double-strand break DNA repair.
    Kaplan AR; Glazer PM
    Int Rev Cell Mol Biol; 2020; 354():187-213. PubMed ID: 32475473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alternative end-joining and classical nonhomologous end-joining pathways repair different types of double-strand breaks during class-switch recombination.
    Cortizas EM; Zahn A; Hajjar ME; Patenaude AM; Di Noia JM; Verdun RE
    J Immunol; 2013 Dec; 191(11):5751-63. PubMed ID: 24146042
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MOF and histone H4 acetylation at lysine 16 are critical for DNA damage response and double-strand break repair.
    Sharma GG; So S; Gupta A; Kumar R; Cayrou C; Avvakumov N; Bhadra U; Pandita RK; Porteus MH; Chen DJ; Cote J; Pandita TK
    Mol Cell Biol; 2010 Jul; 30(14):3582-95. PubMed ID: 20479123
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonhomologous end-joining repair is likely involved in the repair of double-stranded DNA breaks induced by riluzole in melanoma cells.
    Cerchio R; Marinaro C; Foo TK; Xia B; Chen S
    Melanoma Res; 2020 Jun; 30(3):303-308. PubMed ID: 31855905
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RNase L facilitates the repair of DNA double-strand breaks through the nonhomologous end-joining pathway.
    Zhong Y; Pan B; Zhu J; Fu H; Zheng X
    FEBS Lett; 2019 Jun; 593(11):1190-1200. PubMed ID: 31062340
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-Strand Annealing Plays a Major Role in Double-Strand DNA Break Repair following CRISPR-Cas9 Cleavage in
    Zhang WW; Matlashewski G
    mSphere; 2019 Aug; 4(4):. PubMed ID: 31434745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonhomologous end joining: a good solution for bad ends.
    Waters CA; Strande NT; Wyatt DW; Pryor JM; Ramsden DA
    DNA Repair (Amst); 2014 May; 17():39-51. PubMed ID: 24630899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Timely double-strand break repair and pathway choice in pericentromeric heterochromatin depend on the histone demethylase dKDM4A.
    Janssen A; Colmenares SU; Lee T; Karpen GH
    Genes Dev; 2019 Jan; 33(1-2):103-115. PubMed ID: 30578303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding the DNA double-strand break repair and its therapeutic implications.
    Ray U; Raghavan SC
    DNA Repair (Amst); 2021 Oct; 106():103177. PubMed ID: 34325086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Histone deacetylase inhibitors sensitize prostate cancer cells to agents that produce DNA double-strand breaks by targeting Ku70 acetylation.
    Chen CS; Wang YC; Yang HC; Huang PH; Kulp SK; Yang CC; Lu YS; Matsuyama S; Chen CY; Chen CS
    Cancer Res; 2007 Jun; 67(11):5318-27. PubMed ID: 17545612
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Saccharomyces cerevisiae Sin3p facilitates DNA double-strand break repair.
    Jazayeri A; McAinsh AD; Jackson SP
    Proc Natl Acad Sci U S A; 2004 Feb; 101(6):1644-9. PubMed ID: 14711989
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.