BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 36255636)

  • 1. Single-Cell Analysis of Histone Acetylation Dynamics at Replication Forks Using PLA and SIRF.
    Lee SY; Kim JJ; Miller KM
    Methods Mol Biol; 2023; 2589():345-360. PubMed ID: 36255636
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PCAF-Mediated Histone Acetylation Promotes Replication Fork Degradation by MRE11 and EXO1 in BRCA-Deficient Cells.
    Kim JJ; Lee SY; Choi JH; Woo HG; Xhemalce B; Miller KM
    Mol Cell; 2020 Oct; 80(2):327-344.e8. PubMed ID: 32966758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection and Quantitation of Acetylated Histones on Replicating DNA Using In Situ Proximity Ligation Assay and Click-It Chemistry.
    Lazarchuk P; Roy S; Schlacher K; Sidorova J
    Methods Mol Biol; 2019; 1983():29-45. PubMed ID: 31087291
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SIRF: A Single-cell Assay for
    Roy S; Schlacher K
    Bio Protoc; 2019 Sep; 9(18):e3377. PubMed ID: 33654873
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reversion from basal histone H4 hypoacetylation at the replication fork increases DNA damage in FANCA deficient cells.
    Teresa BG; Ayala-Zambrano C; González-Suárez M; Molina B; Torres L; Rodríguez A; Frías S
    PLoS One; 2024; 19(5):e0298032. PubMed ID: 38820384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of protein dynamics at active, stalled, and collapsed replication forks.
    Sirbu BM; Couch FB; Feigerle JT; Bhaskara S; Hiebert SW; Cortez D
    Genes Dev; 2011 Jun; 25(12):1320-7. PubMed ID: 21685366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SIRF: Quantitative in situ analysis of protein interactions at DNA replication forks.
    Roy S; Luzwick JW; Schlacher K
    J Cell Biol; 2018 Apr; 217(4):1521-1536. PubMed ID: 29475976
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acetylation of lysine 56 of histone H3 catalyzed by RTT109 and regulated by ASF1 is required for replisome integrity.
    Han J; Zhou H; Li Z; Xu RM; Zhang Z
    J Biol Chem; 2007 Sep; 282(39):28587-28596. PubMed ID: 17690098
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The NuA4 acetyltransferase and histone H4 acetylation promote replication recovery after topoisomerase I-poisoning.
    Noguchi C; Singh T; Ziegler MA; Peake JD; Khair L; Aza A; Nakamura TM; Noguchi E
    Epigenetics Chromatin; 2019 Apr; 12(1):24. PubMed ID: 30992049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Histone H3K56 acetylation, CAF1, and Rtt106 coordinate nucleosome assembly and stability of advancing replication forks.
    Clemente-Ruiz M; González-Prieto R; Prado F
    PLoS Genet; 2011 Nov; 7(11):e1002376. PubMed ID: 22102830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial Replication Assay (MIRA) for Efficient in situ Quantification of Nascent mtDNA and Protein Interactions with Nascent mtDNA (mitoSIRF).
    Lozen M; Chen Y; Boisvert RA; Schlacher K
    Bio Protoc; 2023 May; 13(10):e4680. PubMed ID: 37251092
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Histone acetyltransferase 1 is required for DNA replication fork function and stability.
    Agudelo Garcia PA; Lovejoy CM; Nagarajan P; Park D; Popova LV; Freitas MA; Parthun MR
    J Biol Chem; 2020 Jun; 295(25):8363-8373. PubMed ID: 32366460
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Replication fork stalling elicits chromatin compaction for the stability of stalling replication forks.
    Feng G; Yuan Y; Li Z; Wang L; Zhang B; Luo J; Ji J; Kong D
    Proc Natl Acad Sci U S A; 2019 Jul; 116(29):14563-14572. PubMed ID: 31262821
    [TBL] [Abstract][Full Text] [Related]  

  • 14. HATtracting Nucleases to Stalled Forks.
    Leuzzi G; Taglialatela A; Ciccia A
    Mol Cell; 2020 Oct; 80(2):177-180. PubMed ID: 33065018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SIN3A histone deacetylase action counteracts MUS81 to promote stalled fork stability.
    Muñoz S; Barroso S; Badra-Fajardo N; Marqueta-Gracia JJ; García-Rubio ML; Ubieto-Capella P; Méndez J; Aguilera A
    Cell Rep; 2024 Feb; 43(2):113778. PubMed ID: 38341854
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SIRFing the replication fork: Assessing protein interactions with nascent DNA.
    Branzei D; Giannattasio M
    J Cell Biol; 2018 Apr; 217(4):1177-1179. PubMed ID: 29496736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of rtt107 recruitment to stalled DNA replication forks by the cullin rtt101 and the rtt109 acetyltransferase.
    Roberts TM; Zaidi IW; Vaisica JA; Peter M; Brown GW
    Mol Biol Cell; 2008 Jan; 19(1):171-80. PubMed ID: 17978089
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Rtt109 histone acetyltransferase facilitates error-free replication to prevent CAG/CTG repeat contractions.
    Yang JH; Freudenreich CH
    DNA Repair (Amst); 2010 Apr; 9(4):414-20. PubMed ID: 20083442
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human CST complex protects stalled replication forks by directly blocking MRE11 degradation of nascent-strand DNA.
    Lyu X; Lei KH; Biak Sang P; Shiva O; Chastain M; Chi P; Chai W
    EMBO J; 2021 Jan; 40(2):e103654. PubMed ID: 33210317
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Histone-modifying enzymes, histone modifications and histone chaperones in nucleosome assembly: Lessons learned from Rtt109 histone acetyltransferases.
    Dahlin JL; Chen X; Walters MA; Zhang Z
    Crit Rev Biochem Mol Biol; 2015; 50(1):31-53. PubMed ID: 25365782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.