These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

352 related articles for article (PubMed ID: 36255672)

  • 41. Multiple dimeric forms of human CD69 result from differential addition of N-glycans to typical (Asn-X-Ser/Thr) and atypical (Asn-X-cys) glycosylation motifs.
    Vance BA; Wu W; Ribaudo RK; Segal DM; Kearse KP
    J Biol Chem; 1997 Sep; 272(37):23117-22. PubMed ID: 9287313
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Studies on the synthesis and processing of the asparagine-linked carbohydrate units of glycoproteins.
    Spiro RG; Spiro MJ
    Philos Trans R Soc Lond B Biol Sci; 1982 Dec; 300(1099):117-27. PubMed ID: 6131453
    [TBL] [Abstract][Full Text] [Related]  

  • 43. N-acetylmuramic acid as capping element of alpha-D-fucose-containing S-layer glycoprotein glycans from Geobacillus tepidamans GS5-97T.
    Kählig H; Kolarich D; Zayni S; Scheberl A; Kosma P; Schäffer C; Messner P
    J Biol Chem; 2005 May; 280(21):20292-9. PubMed ID: 15781455
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Modeling human congenital disorder of glycosylation type IIa in the mouse: conservation of asparagine-linked glycan-dependent functions in mammalian physiology and insights into disease pathogenesis.
    Wang Y; Tan J; Sutton-Smith M; Ditto D; Panico M; Campbell RM; Varki NM; Long JM; Jaeken J; Levinson SR; Wynshaw-Boris A; Morris HR; Le D; Dell A; Schachter H; Marth JD
    Glycobiology; 2001 Dec; 11(12):1051-70. PubMed ID: 11805078
    [TBL] [Abstract][Full Text] [Related]  

  • 45. In vitro conversion of the carbohydrate moiety of fungal glycoproteins to mammalian-type oligosaccharides--evidence for N-acetylglucosaminyltransferase-I-accepting glycans from Trichoderma reesei.
    Maras M; Saelens X; Laroy W; Piens K; Claeyssens M; Fiers W; Contreras R
    Eur J Biochem; 1997 Nov; 249(3):701-7. PubMed ID: 9395316
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Reductive Alkaline Release of N-Glycans Generates a Variety of Unexpected, Useful Products.
    Figl R; Altmann F
    Proteomics; 2018 Feb; 18(3-4):. PubMed ID: 29327411
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Systems analysis of N-glycan processing in mammalian cells.
    Hossler P; Mulukutla BC; Hu WS
    PLoS One; 2007 Aug; 2(8):e713. PubMed ID: 17684559
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Plant glyco-biotechnology.
    Schoberer J; Strasser R
    Semin Cell Dev Biol; 2018 Aug; 80():133-141. PubMed ID: 28688929
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Presence of a glycan at a potential N-glycosylation site, Asn-281, of bovine lactoferrin.
    Wei Z; Nishimura T; Yoshida S
    J Dairy Sci; 2000 Apr; 83(4):683-9. PubMed ID: 10791783
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Arabidopsis β1,2-xylosyltransferase: substrate specificity and participation in the plant-specific N-glycosylation pathway.
    Kajiura H; Okamoto T; Misaki R; Matsuura Y; Fujiyama K
    J Biosci Bioeng; 2012 Jan; 113(1):48-54. PubMed ID: 22024534
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The expanding horizons of asparagine-linked glycosylation.
    Larkin A; Imperiali B
    Biochemistry; 2011 May; 50(21):4411-26. PubMed ID: 21506607
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Degradation of a short-lived glycoprotein from the lumen of the endoplasmic reticulum: the role of N-linked glycans and the unfolded protein response.
    de Virgilio M; Kitzmüller C; Schwaiger E; Klein M; Kreibich G; Ivessa NE
    Mol Biol Cell; 1999 Dec; 10(12):4059-73. PubMed ID: 10588643
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Human UDP-galactose 4'-epimerase (GALE) is required for cell-surface glycome structure and function.
    Broussard A; Florwick A; Desbiens C; Nischan N; Robertson C; Guan Z; Kohler JJ; Wells L; Boyce M
    J Biol Chem; 2020 Jan; 295(5):1225-1239. PubMed ID: 31819007
    [TBL] [Abstract][Full Text] [Related]  

  • 54. N-glycosylation at one rabies virus glycoprotein sequon influences N-glycan processing at a distant sequon on the same molecule.
    Wojczyk BS; Takahashi N; Levy MT; Andrews DW; Abrams WR; Wunner WH; Spitalnik SL
    Glycobiology; 2005 Jun; 15(6):655-66. PubMed ID: 15677380
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Substrate Preference and Interplay of Fucosyltransferase 8 and N-Acetylglucosaminyltransferases.
    Tseng TH; Lin TW; Chen CY; Chen CH; Lin JL; Hsu TL; Wong CH
    J Am Chem Soc; 2017 Jul; 139(28):9431-9434. PubMed ID: 28678517
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Direct identification of nonreducing GlcNAc residues on N-glycans of glycoproteins using a novel chemoenzymatic method.
    Boeggeman E; Ramakrishnan B; Kilgore C; Khidekel N; Hsieh-Wilson LC; Simpson JT; Qasba PK
    Bioconjug Chem; 2007; 18(3):806-14. PubMed ID: 17370997
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Glycosylation and posttranslational maturation of glycoproteins in embryonal carcinomas: identification of two distinct pools of high-mannose glycans.
    Ivatt RJ
    Biochemistry; 1985 Dec; 24(25):7314-20. PubMed ID: 3910102
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Golgi alpha-mannosidase II deficiency in vertebrate systems: implications for asparagine-linked oligosaccharide processing in mammals.
    Moremen KW
    Biochim Biophys Acta; 2002 Dec; 1573(3):225-35. PubMed ID: 12417404
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Glycoproteomics enabled by tagging sialic acid- or galactose-terminated glycans.
    Ramya TN; Weerapana E; Cravatt BF; Paulson JC
    Glycobiology; 2013 Feb; 23(2):211-21. PubMed ID: 23070960
    [TBL] [Abstract][Full Text] [Related]  

  • 60. N-glycan processing in ER quality control.
    Ruddock LW; Molinari M
    J Cell Sci; 2006 Nov; 119(Pt 21):4373-80. PubMed ID: 17074831
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.