These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 3625571)

  • 1. Dynamics and stimulus-dependence of pacemaker control during behavioral modulations in the weakly electric fish, Apteronotus.
    Dye J
    J Comp Physiol A; 1987 Aug; 161(2):175-85. PubMed ID: 3625571
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intracellular recording in the medullary pacemaker nucleus of the weakly electric fish, Apteronotus, during modulatory behaviors.
    Dye J; Heiligenberg W
    J Comp Physiol A; 1987 Aug; 161(2):187-200. PubMed ID: 3625572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arginine vasotocin modulates a sexually dimorphic communication behavior in the weakly electric fish Apteronotus leptorhynchus.
    Bastian J; Schniederjan S; Nguyenkim J
    J Exp Biol; 2001 Jun; 204(Pt 11):1909-23. PubMed ID: 11441033
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Species-specific differences in sensorimotor adaptation are correlated with differences in social structure.
    Oestreich J; Zakon HH
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2005 Sep; 191(9):845-56. PubMed ID: 16007457
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The complexity of high-frequency electric fields degrades electrosensory inputs: implications for the jamming avoidance response in weakly electric fish.
    Shifman AR; Lewis JE
    J R Soc Interface; 2018 Jan; 15(138):. PubMed ID: 29367237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The jamming avoidance response in Eigenmannia is controlled by two separate motor pathways.
    Metzner W
    J Neurosci; 1993 May; 13(5):1862-78. PubMed ID: 8478680
    [TBL] [Abstract][Full Text] [Related]  

  • 7. EOD modulations of brown ghost electric fish: JARs, chirps, rises, and dips.
    Zakon H; Oestreich J; Tallarovic S; Triefenbach F
    J Physiol Paris; 2002; 96(5-6):451-8. PubMed ID: 14692493
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stimulus discrimination in the diencephalon of Eigenmannia: the emergence and sharpening of a sensory filter.
    Keller CH
    J Comp Physiol A; 1988 Apr; 162(6):747-57. PubMed ID: 3397918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and sexual dimorphism of the electrocommunication signals of the weakly electric fish, Adontosternarchus devenanzii.
    Zhou M; Smith GT
    J Exp Biol; 2006 Dec; 209(Pt 23):4809-18. PubMed ID: 17114413
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electric interactions through chirping behavior in the weakly electric fish, Apteronotus leptorhynchus.
    Zupanc GK; Sîrbulescu RF; Nichols A; Ilies I
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2006 Feb; 192(2):159-73. PubMed ID: 16247622
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Serotonin in a diencephalic nucleus controlling communication in an electric fish: sexual dimorphism and relationship to indicators of dominance.
    Telgkamp P; Combs N; Smith GT
    Dev Neurobiol; 2007 Feb; 67(3):339-54. PubMed ID: 17443792
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A JAR of Chirps: The Gymnotiform Chirp Can Function as Both a Communication Signal and a Jamming Avoidance Response.
    Field CE; Petersen TA; Alves-Gomes JA; Braun CB
    Front Integr Neurosci; 2019; 13():55. PubMed ID: 31632247
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An in vitro physiological preparation of a vertebrate communicatory behavior: chirping in the weakly electric fish, Apteronotus.
    Dye J
    J Comp Physiol A; 1988 Aug; 163(4):445-58. PubMed ID: 3184007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Individual prepacemaker neurons can modulate the pacemaker cycle of the gymnotiform electric fish, Eigenmannia.
    Kawasaki M; Heiligenberg W
    J Comp Physiol A; 1988 Jan; 162(1):13-21. PubMed ID: 3351783
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of difference frequency on electrocommunication: chirp production and encoding in a species of weakly electric fish, Apteronotus leptorhynchus.
    Hupé GJ; Lewis JE; Benda J
    J Physiol Paris; 2008; 102(4-6):164-72. PubMed ID: 18984046
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sex recognition and neuronal coding of electric organ discharge waveform in the pulse-type weakly electric fish, Hypopomus occidentalis.
    Shumway CA; Zelick RD
    J Comp Physiol A; 1988 Aug; 163(4):465-78. PubMed ID: 3184009
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 'Recognition units' at the top of a neuronal hierarchy? Prepacemaker neurons in Eigenmannia code the sign of frequency differences unambiguously.
    Rose GJ; Kawasaki M; Heiligenberg W
    J Comp Physiol A; 1988 Apr; 162(6):759-72. PubMed ID: 3397919
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From oscillators to modulators: behavioral and neural control of modulations of the electric organ discharge in the gymnotiform fish, Apteronotus leptorhynchus.
    Zupanc GK
    J Physiol Paris; 2002; 96(5-6):459-72. PubMed ID: 14692494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spontaneous modulations of the electric organ discharge in the weakly electric fish, Apteronotus leptorhynchus: a biophysical and behavioral analysis.
    Engler G; Fogarty CM; Banks JR; Zupanc GK
    J Comp Physiol A; 2000; 186(7-8):645-60. PubMed ID: 11016781
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diversity of sexual dimorphism in electrocommunication signals and its androgen regulation in a genus of electric fish, Apteronotus.
    Dunlap KD; Thomas P; Zakon HH
    J Comp Physiol A; 1998 Jul; 183(1):77-86. PubMed ID: 9691480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.