BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 36255780)

  • 1. Improved calibration method of a four-quadrant detector based on Bayesian theory in a laser auto-collimation measurement system.
    Diao K; Liu X; Yao Z; Lu W; Yang W
    Appl Opt; 2022 Jul; 61(19):5545-5551. PubMed ID: 36255780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High Precision Position Measurement Method for Laguerre-Gaussian Beams Using a Quadrant Detector.
    Li Q; Wu J; Chen Y; Wang J; Gao S; Wu Z
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30453589
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Precision Log-Ratio Spot Position Detection Algorithm with a Quadrant Detector under Different SNR Environments.
    Huo L; Wu Z; Wu J; Gao S; Chen Y; Song Y; Wang S
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35459076
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Improved Method for Spot Position Detection of a Laser Tracking and Positioning System Based on a Four-Quadrant Detector.
    Zhang W; Guo W; Zhang C; Zhao S
    Sensors (Basel); 2019 Oct; 19(21):. PubMed ID: 31671701
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved measurement accuracy of spot position on an InGaAs quadrant detector.
    Wu J; Chen Y; Gao S; Li Y; Wu Z
    Appl Opt; 2015 Sep; 54(27):8049-54. PubMed ID: 26406504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Improved Method for the Position Detection of a Quadrant Detector for Free Space Optical Communication.
    Li Q; Xu S; Yu J; Yan L; Huang Y
    Sensors (Basel); 2019 Jan; 19(1):. PubMed ID: 30621306
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improve the Detection Range of Semi-Active Laser Guidance System by Temperature Compensation of Four-Quadrant PIN Detector.
    Gao S; Liu H; Zhang H; Zhang X; Chen J
    Sensors (Basel); 2019 May; 19(10):. PubMed ID: 31108936
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quadrant response model and error analysis of four-quadrant detectors related to the non-uniform spot and blind area.
    Zhang J; Qian W; Gu G; Ren K; Chen Q; Mao C; Cai G; Liu Z; Xu L
    Appl Opt; 2018 Aug; 57(24):6898-6905. PubMed ID: 30129575
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Method for Improving the Detection Accuracy of the Spot Position of the Four-Quadrant Detector in a Free Space Optical Communication System.
    Wang X; Su X; Liu G; Han J; Wang K; Zhu W
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33327521
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reflector automatic acquisition and pointing based on auto-collimation theodolite.
    Luo J; Wang Z; Wen Z; Li M; Liu S; Shen C
    Rev Sci Instrum; 2018 Jan; 89(1):015101. PubMed ID: 29390678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TRC-Based High-Precision Spot Position Detection in Inter-Satellite Laser Communication.
    Li Q; Guo H; Xu S; Xu Y; Wang Q; He D; Peng Z; Huang Y
    Sensors (Basel); 2020 Oct; 20(19):. PubMed ID: 33023183
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An accurate projector calibration method based on polynomial distortion representation.
    Liu M; Sun C; Huang S; Zhang Z
    Sensors (Basel); 2015 Oct; 15(10):26567-82. PubMed ID: 26492247
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A heterodyne straightness and displacement measuring interferometer with laser beam drift compensation for long-travel linear stage metrology.
    Chen B; Cheng L; Yan L; Zhang E; Lou Y
    Rev Sci Instrum; 2017 Mar; 88(3):035114. PubMed ID: 28372378
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling and digital calibration for the mirror normal pointing error of the 2D scanning reflector.
    Zhao H; Li S; Jiang T; Hong Y; Ma Z
    Appl Opt; 2023 Apr; 62(10):2642-2650. PubMed ID: 37132814
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-accuracy calibration method for an underwater one-mirror galvanometric laser scanner.
    Li X; Chen X; Li W; Yin X; Yuan X; Chen H; Zhou J; Ma X
    Opt Express; 2023 Feb; 31(4):5973-5989. PubMed ID: 36823866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Accuracy Calibration Based on Linearity Adjustment for Eddy Current Displacement Sensor.
    Liu W; Liang B; Jia Z; Feng D; Jiang X; Li X; Zhou M
    Sensors (Basel); 2018 Aug; 18(9):. PubMed ID: 30154354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Improved Method for Accurate Radiation Measurement Based on Dark Output Noise Drift Compensation.
    Zhao B; Zhang K; Yu Y; Yu K; Liu Y
    Sensors (Basel); 2023 Jul; 23(13):. PubMed ID: 37448006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Sub-Regional Calibration Method That Can Accomplish Error Compensation for Photoelectric Scanning Measurement Network.
    Zhang Z; Ren Y; Yang L; Lin J; Shi S; Zhu J
    Sensors (Basel); 2019 May; 19(9):. PubMed ID: 31067795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Normal Sensor Calibration Method Based on an Extended Kalman Filter for Robotic Drilling.
    Chen D; Yuan P; Wang T; Cai Y; Tang H
    Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30332810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spot position scheme on a quadrant detector for a spaceborne laser communication system.
    Wei J; Zhu H; Wang Y; Sun N; Liu F; Zhang J; Chen Y; Liu J
    Appl Opt; 2024 Apr; 63(12):3162-3167. PubMed ID: 38856461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.