These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 36255857)

  • 1. Spot alignment based on a five-photodiode receiver for a UWOC system.
    Xie S; Mi H; Feng R
    Appl Opt; 2022 Aug; 61(22):G1-G8. PubMed ID: 36255857
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Method for Improving the Detection Accuracy of the Spot Position of the Four-Quadrant Detector in a Free Space Optical Communication System.
    Wang X; Su X; Liu G; Han J; Wang K; Zhu W
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33327521
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of underwater wireless optical communication system performance.
    Yang Y; He F; Guo Q; Wang M; Zhang J; Duan Z
    Appl Opt; 2019 Dec; 58(36):9808-9814. PubMed ID: 31873624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 108 m Underwater Wireless Optical Communication Using a 490 nm Blue VECSEL and an AOM.
    Tian R; Wang T; Shen X; Zhu R; Jiang L; Lu Y; Lu H; Song Y; Zhang P
    Sensors (Basel); 2024 Apr; 24(8):. PubMed ID: 38676226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Equalization equal gain combining for a single-input to multiple-output underwater wireless optical communication system under a Gaussian beam.
    Yang Y; Qiu X; Zhang J; Nie H; He H; Min Z
    Appl Opt; 2023 Aug; 62(23):G90-G100. PubMed ID: 37707068
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Precision Log-Ratio Spot Position Detection Algorithm with a Quadrant Detector under Different SNR Environments.
    Huo L; Wu Z; Wu J; Gao S; Chen Y; Song Y; Wang S
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35459076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CMOS monolithic photodetector with a built-in 2-dimensional light direction sensor for laser diode based underwater wireless optical communications.
    Lv Z; He G; Qiu C; Fan Y; Wang H; Liu Z
    Opt Express; 2021 May; 29(11):16197-16204. PubMed ID: 34154188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-Time Underwater Wireless Optical Communication System Based on LEDs and Estimation of Maximum Communication Distance.
    Zhang M; Zhou H
    Sensors (Basel); 2023 Sep; 23(17):. PubMed ID: 37688104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Over 10 attenuation length gigabits per second underwater wireless optical communication using a silicon photomultiplier (SiPM) based receiver.
    Zhang L; Tang X; Sun C; Chen Z; Li Z; Wang H; Jiang R; Shi W; Zhang A
    Opt Express; 2020 Aug; 28(17):24968-24980. PubMed ID: 32907028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational temporal ghost imaging for long-distance underwater wireless optical communication.
    Chen X; Jin M; Chen H; Wang Y; Qiu P; Cui X; Sun B; Tian P
    Opt Lett; 2021 Apr; 46(8):1938-1941. PubMed ID: 33857110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-photon detection for MIMO underwater wireless optical communication enabled by arrayed LEDs and SiPMs.
    Li J; Ye D; Fu K; Wang L; Piao J; Wang Y
    Opt Express; 2021 Aug; 29(16):25922-25944. PubMed ID: 34614910
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Demonstration of a 2 × 2 MIMO-UWOC system with large spot against air bubbles.
    Chen X; Dai Y; Tong Z; Yang X; Li X; Song G; Zou H; Jia B; Qin S; Zhang Z; Zhao J; Xu J
    Appl Opt; 2022 Jan; 61(1):41-48. PubMed ID: 35200800
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Security weaknesses of underwater wireless optical communication.
    Kong M; Wang J; Chen Y; Ali T; Sarwar R; Qiu Y; Wang S; Han J; Xu J
    Opt Express; 2017 Sep; 25(18):21509-21518. PubMed ID: 29041448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of solar noise impact on the performance of underwater wireless optical communication links.
    Hamza T; Khalighi MA; Bourennane S; Léon P; Opderbecke J
    Opt Express; 2016 Oct; 24(22):25832-25845. PubMed ID: 27828532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 100-m/3-Gbps underwater wireless optical transmission using a wideband photomultiplier tube (PMT).
    Fei C; Wang Y; Du J; Chen R; Lv N; Zhang G; Tian J; Hong X; He S
    Opt Express; 2022 Jan; 30(2):2326-2337. PubMed ID: 35209375
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of watertight optical window with plain glass on receiving field for underwater wireless optical communication.
    Han B; Sun Y; Ma L; Lv P
    Appl Opt; 2022 May; 61(13):3558-3565. PubMed ID: 36256393
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental demonstration of an underwater wireless optical communication employing spread spectrum technology.
    Lyu W; Zhao M; Chen X; Yang X; Qiu Y; Tong Z; Xu J
    Opt Express; 2020 Mar; 28(7):10027-10038. PubMed ID: 32225588
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time-reversal waveform design for underwater wireless optical communication systems.
    Wang J; Lian J
    Opt Express; 2023 Sep; 31(19):31447-31462. PubMed ID: 37710664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Secure and noise-resistant underwater wireless optical communication based on spectrum spread and encrypted OFDM modulation.
    Zhang J; Gao G; Zhang J; Guo Y
    Opt Express; 2022 May; 30(10):17140-17155. PubMed ID: 36221543
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-reach underwater wireless optical communication with relaxed link alignment enabled by optical combination and arrayed sensitive receivers.
    Zhao M; Li X; Chen X; Tong Z; Lyu W; Zhang Z; Xu J
    Opt Express; 2020 Nov; 28(23):34450-34460. PubMed ID: 33182914
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.