These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 36255873)

  • 1. Near-infrared sensitive two-wave mixing adaptive interferometer based on a liquid crystal light valve with a semiconductor substrate.
    Shcherbin K; Gvozdovskyy I; Shumelyuk A; Slagle J; Evans DR
    Appl Opt; 2022 Aug; 61(22):6498-6503. PubMed ID: 36255873
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Picometer detection by adaptive holographic interferometry in a liquid-crystal light valve.
    Bortolozzo U; Residori S; Huignard JP
    Opt Lett; 2009 Jul; 34(13):2006-8. PubMed ID: 19571981
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characteristics of two-wave mixing adaptive interferometer with CdTe:Ge at 1.06 and 1.55 μm and improved temporal adaptability with temperature control.
    Shcherbin K; Danylyuk V; Klein M
    Appl Opt; 2013 Apr; 52(12):2729-34. PubMed ID: 23669683
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transmissive liquid crystal light-valve for near-infrared applications.
    Bortolozzo U; Residori S; Huignard JP
    Appl Opt; 2013 Aug; 52(22):E73-7. PubMed ID: 23913092
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Infrared sensitive liquid crystal light valve with semiconductor substrate.
    Shcherbin K; Gvozdovskyy I; Evans DR
    Appl Opt; 2016 Feb; 55(5):1076-81. PubMed ID: 26906379
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast adaptive interferometer on dynamic reflection hologram in CdTe:V.
    Di Girolamo S; Kamshilin AA; Romashko RV; Kulchin YN; Launay JC
    Opt Express; 2007 Jan; 15(2):545-55. PubMed ID: 19532273
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Signal-beam amplification by two-wave mixing in a liquid-crystal light valve.
    Brignon A; Bongrand I; Loiseaux B; Huignard JP
    Opt Lett; 1997 Dec; 22(24):1855-7. PubMed ID: 18188386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A high spectral sensitivity interferometer based on the dispersive property of the semiconductor GaAs.
    Cai Y; Zhang Y; Yang C; Dang B; Wang J; Yuan P
    Opt Express; 2009 Nov; 17(24):22254-9. PubMed ID: 19997473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical coherent detection through multi-scattering media by wave-mixing cleaning effect in liquid-crystal OASLM.
    Bortolozzo U; Residori S; Ramaz F; Huignard JP
    Opt Lett; 2023 Aug; 48(15):3969-3972. PubMed ID: 37527095
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive demodulation of dynamic signals from fiber Bragg gratings using two-wave mixing technology.
    Qiao Y; Zhou Y; Krishnaswamy S
    Appl Opt; 2006 Jul; 45(21):5132-42. PubMed ID: 16826251
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hybrid interferometer with nonlinear four-wave mixing process and linear beam splitter.
    Liu S; Jing J
    Opt Express; 2017 Jul; 25(14):15854-15860. PubMed ID: 28789097
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lateral shear interferometer for infrared and visible light.
    Lewandowski J
    Appl Opt; 1989 Jun; 28(12):2373-80. PubMed ID: 20555526
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wavelength tunable infrared light source based on semiconductor-integrated liquid crystal filter.
    Yao YH; Wang CT; Chen RR; Jau HC; Chiu YJ; Lin TH
    Opt Express; 2012 Sep; 20(20):22872-7. PubMed ID: 23037436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 40 Gb/s wavelength conversion via four-wave mixing in a quantum-dot semiconductor optical amplifier.
    Meuer C; Schmidt-Langhorst C; Schmeckebier H; Fiol G; Arsenijević D; Schubert C; Bimberg D
    Opt Express; 2011 Feb; 19(4):3788-98. PubMed ID: 21369203
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic holographic interferometry by photorefractive crystals for quantitative deformation measurements.
    Pouet B; Krishnaswamy S
    Appl Opt; 1996 Feb; 35(5):787-94. PubMed ID: 21069069
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optically controlled Fabry-Perot interferometer using a liquid crystal light valve.
    Taber DB; Davis JA; Holloway LA; Almagor O
    Appl Opt; 1990 Jun; 29(17):2623-31. PubMed ID: 20567301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of copropagating and counterpropagating directions on a semiconductor optical amplifier-Mach-Zehnder interferometer based wavelength converter using a continuous-wave assist light.
    Chung HS; Inohara R; Nishimura K; Usami M
    Opt Lett; 2005 Jul; 30(13):1716-8. PubMed ID: 16075548
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In-line interferometer for broadband near-field scanning optical spectroscopy.
    Brauer J; Zhan J; Chimeh A; Korte A; Lienau C; Gross P
    Opt Express; 2017 Jun; 25(13):15504-15525. PubMed ID: 28788974
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-adaptive vibrometry with CMOS-LCOS digital holography.
    Bortolozzo U; Dolfi D; Huignard JP; Molin S; Peigné A; Residori S
    Opt Lett; 2015 Apr; 40(7):1302-5. PubMed ID: 25831318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generation of 113-GHz, 1.8-ps optical pulse trains by Fourier synthesis of four-wave mixing signals obtained from semiconductor optical amplifiers.
    Futami F; Kikuchi K
    Opt Lett; 1997 Dec; 22(24):1873-5. PubMed ID: 18188392
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.