BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 36255935)

  • 1. Spatially resolved reflectance from turbid media having a rough surface. Part II: experiments.
    Lindner B; Foschum F; Kienle A
    Appl Opt; 2022 Sep; 61(27):8123-8132. PubMed ID: 36255935
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of Lambertian surface scattering on the spatially resolved reflectance from turbid media: a computational study.
    Lindner B; Foschum F; Kienle A
    Appl Opt; 2022 Apr; 61(10):2775-2787. PubMed ID: 35471353
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatially resolved reflectance from turbid media having a rough surface. Part I: simulations.
    Lindner B; Foschum F; Kienle A
    Appl Opt; 2022 Oct; 61(28):8361-8370. PubMed ID: 36256149
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of the optical properties of turbid media from a single Monte Carlo simulation.
    Kienle A; Patterson MS
    Phys Med Biol; 1996 Oct; 41(10):2221-7. PubMed ID: 8912392
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-time absorption and scattering characterization of slab-shaped turbid samples obtained by a combination of angular and spatially resolved measurements.
    Dam JS; Yavari N; Sørensen S; Andersson-Engels S
    Appl Opt; 2005 Jul; 44(20):4281-90. PubMed ID: 16045216
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of single Monte Carlo methods for prediction of reflectance from turbid media.
    Martinelli M; Gardner A; Cuccia D; Hayakawa C; Spanier J; Venugopalan V
    Opt Express; 2011 Sep; 19(20):19627-42. PubMed ID: 21996904
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of multiple artificial neural networks for the determination of the optical properties of turbid media.
    Jäger M; Foschum F; Kienle A
    J Biomed Opt; 2013 May; 18(5):57005. PubMed ID: 23680997
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An integrated fiber-optic probe combined with support vector regression for fast estimation of optical properties of turbid media.
    Zhou Y; Fu X; Ying Y; Fang Z
    Anal Chim Acta; 2015 Jun; 880():122-9. PubMed ID: 26092344
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of a fiberoptic-based system for measurement of optical properties in highly attenuating turbid media.
    Sharma D; Agrawal A; Matchette LS; Pfefer TJ
    Biomed Eng Online; 2006 Aug; 5():49. PubMed ID: 16928274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of the optical properties of turbid media by measurements of the spatially resolved reflectance considering the point-spread function of the camera system.
    Pilz M; Honold S; Kienle A
    J Biomed Opt; 2008; 13(5):054047. PubMed ID: 19021427
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radiative transport in the delta-P1 approximation for semi-infinite turbid media.
    Seo I; Hayakawa CK; Venugopalan V
    Med Phys; 2008 Feb; 35(2):681-93. PubMed ID: 18383690
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metamodeling approach for efficient estimation of optical properties of turbid media from spatially resolved diffuse reflectance measurements.
    Watté R; Do Trong NN; Aernouts B; Erkinbaev C; De Baerdemaeker J; Nicolaï B; Saeys W
    Opt Express; 2013 Dec; 21(26):32630-42. PubMed ID: 24514857
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantification of the optical properties of two-layer turbid materials using a hyperspectral imaging-based spatially-resolved technique.
    Cen H; Lu R
    Appl Opt; 2009 Oct; 48(29):5612-23. PubMed ID: 19823246
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Perturbation and differential Monte Carlo methods for measurement of optical properties in a layered epithelial tissue model.
    Seo I; You JS; Hayakawa CK; Venugopalan V
    J Biomed Opt; 2007; 12(1):014030. PubMed ID: 17343505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Depolarization of light in turbid media: a scattering event resolved Monte Carlo study.
    Guo X; Wood MF; Ghosh N; Vitkin IA
    Appl Opt; 2010 Jan; 49(2):153-62. PubMed ID: 20062501
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensitivity analysis for oblique incidence reflectometry using Monte Carlo simulations.
    Kamran F; Andersen PE
    Appl Opt; 2015 Aug; 54(23):7099-105. PubMed ID: 26368382
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Backscattering of linearly polarized light from turbid tissue-like scattering medium with rough surface.
    Doronin A; Tchvialeva L; Markhvida I; Lee TK; Meglinski I
    J Biomed Opt; 2016 Jul; 21(7):71117. PubMed ID: 27401802
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decoupled fluorescence Monte Carlo model for direct computation of fluorescence in turbid media.
    Luo Z; Deng Y; Wang K; Lian L; Yang X; Luo Q
    J Biomed Opt; 2015 Feb; 20(2):25002. PubMed ID: 25649626
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved accuracy in time-resolved diffuse reflectance spectroscopy.
    Alerstam E; Andersson-Engels S; Svensson T
    Opt Express; 2008 Jul; 16(14):10440-54. PubMed ID: 18607457
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of optical properties of turbid media: experimental comparison of spatially and temporally resolved reflectance methods.
    Falconet J; Laidevant A; Sablong R; da Silva A; Berger M; Jaillon F; Perrin E; Dinten JM; Saint-Jalmes H
    Appl Opt; 2008 Apr; 47(11):1734-9. PubMed ID: 18404170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.