These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 36255964)

  • 1. Analysis of the RCF crack detection phenomenon based on induction thermography.
    Liang X; Peng J; Zhang X; Guo J; Zhang Y
    Appl Opt; 2022 Jun; 61(16):4809-4816. PubMed ID: 36255964
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative Detection of Cracks in Steel Using Eddy Current Pulsed Thermography.
    Shi Z; Xu X; Ma J; Zhen D; Zhang H
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29614841
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantification of closed cracks in railway using eddy current pulsed thermography.
    Yin H; Peng J; Zhang X; Tian K; Zhang Y; Guo J
    Appl Opt; 2021 Jun; 60(17):5195-5202. PubMed ID: 34143088
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of Stress Intensity Factor on Rail Fatigue Crack Propagation by Finite Element Method.
    Gao R; Liu M; Wang B; Wang Y; Shao W
    Materials (Basel); 2021 Sep; 14(19):. PubMed ID: 34640108
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electromagnetic pulsed thermography for natural cracks inspection.
    Gao Y; Tian GY; Wang P; Wang H; Gao B; Woo WL; Li K
    Sci Rep; 2017 Feb; 7():42073. PubMed ID: 28169361
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Molybdenum Addition on Rolling Contact Fatigue of Locomotive Wheels under Rolling-Sliding Condition.
    Wang Y; Xiang P; Ding H; Wang W; Zou Q; Liu X; Guo J; Liu Q
    Materials (Basel); 2020 Sep; 13(19):. PubMed ID: 32992831
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Eddy Current Sensor Array for Electromagnetic Sensing and Crack Reconstruction with High Lift-Off in Railway Tracks.
    Shao Y; Xia Z; Ding Y; Crocker B; Saunders S; Bai X; Peyton A; Conniffe D; Yin W
    Sensors (Basel); 2024 Jun; 24(13):. PubMed ID: 39000995
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Eddy Current Pulsed Thermography with Different Excitation Configurations for Metallic Material and Defect Characterization.
    Tian GY; Gao Y; Li K; Wang Y; Gao B; He Y
    Sensors (Basel); 2016 Jun; 16(6):. PubMed ID: 27338389
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resonant frequency tracking mode on eddy current pulsed thermography non-destructive testing.
    Miao L; Gao B; Li H; Tian G
    Philos Trans A Math Phys Eng Sci; 2020 Oct; 378(2182):20190607. PubMed ID: 32921235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Research on life evaluation method of solder joint based on eddy current pulse thermography.
    Zhou X; Lu X; Cao X; Liu Z; Chen Y
    Rev Sci Instrum; 2019 Aug; 90(8):084901. PubMed ID: 31472622
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface Crack Detection in Precasted Slab Track in High-Speed Rail via Infrared Thermography.
    Li ZW; Liu XZ; Lu HY; He YL; Zhou YL
    Materials (Basel); 2020 Oct; 13(21):. PubMed ID: 33137981
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Surface Ultrasonic Rolling Treatment on Rolling Contact Fatigue Life of D2 Wheel Steel.
    Liu P; Lin Z; Liu C; Zhao X; Ren R
    Materials (Basel); 2020 Nov; 13(23):. PubMed ID: 33260491
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Healing of Fatigue Crack in 1045 Steel by Using Eddy Current Treatment.
    Yang C; Xu W; Guo B; Shan D; Zhang J
    Materials (Basel); 2016 Jul; 9(8):. PubMed ID: 28773761
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Research on defects inspection of solder balls based on eddy current pulsed thermography.
    Zhou X; Zhou J; Tian G; Wang Y
    Sensors (Basel); 2015 Oct; 15(10):25882-97. PubMed ID: 26473871
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparative study of principal component analysis and independent component analysis in eddy current pulsed thermography data processing.
    Bai L; Gao B; Tian S; Cheng Y; Chen Y; Tian GY; Woo WL
    Rev Sci Instrum; 2013 Oct; 84(10):104901. PubMed ID: 24182145
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nondestructive analysis of rolling contact fatigue cracks using induced scanning thermography.
    Zhang X; Peng J; Zhang Q; Tian K; Tang S; Liang X; Wang T; Gao X
    Opt Express; 2022 Nov; 30(24):42982-42994. PubMed ID: 36523007
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal Desorption Analysis of Hydrogen in Non-hydrogen-Charged Rolling Contact Fatigue-Tested 100Cr6 Steel.
    Richardson AD; Evans MH; Wang L; Wood RJK; Ingram M
    Tribol Lett; 2018; 66(1):4. PubMed ID: 31983860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A High-Sensitivity Flexible Eddy Current Array Sensor for Crack Monitoring of Welded Structures under Varying Environment.
    Chen T; He Y; Du J
    Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29865189
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Depth estimation of surface cracks on metallic components by means of lock-in thermography.
    Streza M; Dadarlat D; Fedala Y; Longuemart S
    Rev Sci Instrum; 2013 Jul; 84(7):074902. PubMed ID: 23902091
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Evolution of White Etching Cracks (WECs) in Rolling Contact Fatigue-Tested 100Cr6 Steel.
    Richardson AD; Evans MH; Wang L; Wood RJK; Ingram M; Meuth B
    Tribol Lett; 2018; 66(1):6. PubMed ID: 31983861
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.