These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 36255992)

  • 1. Characterization of laser-induced shock waves generated during infrared laser ablation of copper by the optical beam deflection method.
    Rehman ZU; Raza A; Qayyum H; Ullah S; Mahmood S; Qayyum A
    Appl Opt; 2022 Oct; 61(29):8606-8612. PubMed ID: 36255992
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laser energy partitioning in nanosecond pulsed laser-induced air breakdown: effect of incident laser energy.
    Qayyum H; Ali Wahaj A; Noor A; Abdel-Aty AH; Al-Harbi N; Qayyum A; Rehman ZU
    Appl Opt; 2023 Jul; 62(19):5189-5194. PubMed ID: 37707222
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optodynamic characterization of shock waves after laser-induced breakdown in water.
    Petkovsek R; Mozina J; Mocnik G
    Opt Express; 2005 May; 13(11):4107-12. PubMed ID: 19495322
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Laser-induced shock wave two-dimensional extraction technology based on a beam deflection method.
    Sun H; Yin Y; Liu X; Yi W; Liu R
    Appl Opt; 2024 Apr; 63(12):3326-3333. PubMed ID: 38856484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental investigation of nanosecond laser-induced shock waves in water using multiple excitation beams.
    Yang Z; Bao H; Dai L; Zhang H; Lu J
    Opt Express; 2023 Jun; 31(13):21845-21862. PubMed ID: 37381272
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of focusing conditions on laser-induced shock waves at titanium-water interface.
    Nath A; Khare A
    Appl Opt; 2011 Jul; 50(19):3275-81. PubMed ID: 21743529
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Focusing of shock waves induced by optical breakdown in water.
    Sankin GN; Zhou Y; Zhong P
    J Acoust Soc Am; 2008 Jun; 123(6):4071-81. PubMed ID: 18537359
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laser shock wave-induced visible mechanoluminescence from semi-transparent organic crystals.
    Sonwane VD; Gour AS; Jha P
    Luminescence; 2017 Feb; 32(1):100-103. PubMed ID: 27162108
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water.
    Juhasz T; Kastis GA; Suárez C; Bor Z; Bron WE
    Lasers Surg Med; 1996; 19(1):23-31. PubMed ID: 8836993
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of shock waves on laser-driven proton acceleration.
    Lundh O; Lindau F; Persson A; Wahlström CG; McKenna P; Batani D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Aug; 76(2 Pt 2):026404. PubMed ID: 17930159
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical investigation on the ranging performance of forward pulsed laser radar affected by shock waves.
    Hua T; Liu T; Dai K; Yao Z; Zhang X; Zhang H
    Opt Express; 2022 Jun; 30(12):20909-20926. PubMed ID: 36224825
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical beam distortions induced by a shock wave.
    Banakh VA; Sukharev AA; Falits AV
    Appl Opt; 2015 Mar; 54(8):2023-31. PubMed ID: 25968379
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental study of different pulse delays on the phenomenon of double shock waves induced by a millisecond-nanosecond combined-pulse laser.
    Li JY; Zhang W; Guo LP; Zhang XY; Yuan BS; Guo M; Jin GY
    Appl Opt; 2020 Aug; 59(24):7338-7342. PubMed ID: 32902500
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies of acoustical and shock waves in the pulsed laser ablation of biotissue.
    Esenaliev RO; Oraevsky AA; Letokhov VS; Karabutov AA; Malinsky TV
    Lasers Surg Med; 1993; 13(4):470-84. PubMed ID: 8366748
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Study of Polycrystalline Silicon Damage Features Based on Nanosecond Pulse Laser Irradiation with Different Wavelength Effects.
    Xu J; Chen C; Zhang T; Han Z
    Materials (Basel); 2017 Mar; 10(3):. PubMed ID: 28772620
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Laser-induced pressure waves in the eye. Propagation characteristics].
    Spörl E; Gruchmann T; Genth U; Mierdel P; Seiler T
    Ophthalmologe; 1997 Aug; 94(8):578-82. PubMed ID: 9376697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atomic and Molecular Species Post-2 μs Dynamics in Laser-Induced Carbon Plasmas in Air.
    Yousfi H; Abdelli-Messaci S; Ouamerali O; Dekhira A
    Appl Spectrosc; 2021 Mar; 75(3):287-298. PubMed ID: 33103491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrafast ultrasound imaging of surface acoustic waves induced by laser excitation compared with acoustic radiation force.
    Zhao L; Vanderlaan D; Yoon H; Liu J; Li C; Emelianov SY
    Opt Lett; 2020 Apr; 45(7):1810-1813. PubMed ID: 32236005
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shock-wave propagation and cavitation bubble oscillation by Nd:YAG laser ablation of a metal in water.
    Chen X; Xu RQ; Chen JP; Shen ZH; Jian L; Ni XW
    Appl Opt; 2004 Jun; 43(16):3251-7. PubMed ID: 15181804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Structure and dynamics of photo-acoustic shock-waves in 193 nm excimer laser photo-ablation of the cornea].
    Kermani O; Lubatschowski H
    Fortschr Ophthalmol; 1991; 88(6):748-53. PubMed ID: 1794797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.