These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 36255995)

  • 1. Automatic design of an extreme ultraviolet lithography objective system based on the Seidel aberration theory.
    Tan W; Ji H; Mo Y; Ma D
    Appl Opt; 2022 Oct; 61(29):8633-8640. PubMed ID: 36255995
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Grouping design method dependence on an illumination system and large off-axis distance for an anamorphic extreme ultraviolet lithography objective.
    Yan X; Li Y; Liu L; Liu K
    Appl Opt; 2022 Jan; 61(3):806-811. PubMed ID: 35200787
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic initial configuration in off-axis reflective optical system design using combined nodal and Seidel aberration.
    Qu Z; Zhong X; Zhang K; Li L; Wang Y
    Appl Opt; 2022 May; 61(13):3630-3640. PubMed ID: 36256402
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design method for off-axis aspheric reflective optical system with extremely low aberration and large field of view.
    Wu Y; Wang L; Yu J; Yu B; Jin C
    Appl Opt; 2020 Nov; 59(32):10185-10193. PubMed ID: 33175796
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anamorphic objective design for extreme ultraviolet lithography at the 5∼1  nm technology node.
    Liu M; Li Y
    Appl Opt; 2021 Aug; 60(24):7254-7258. PubMed ID: 34613013
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of an extreme ultraviolet lithography projection objective with a grouping design method through forward and reverse real ray tracing.
    Yan X; Li Y; Li Y; Liu L; Liu K
    Appl Opt; 2022 Sep; 61(25):7449-7454. PubMed ID: 36256048
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Active compensation for optimal RMS wavefront error in perturbed off-axis optical telescopes using nodal aberration theory.
    Wen M; Han C; Ma H
    Appl Opt; 2021 Feb; 60(6):1790-1800. PubMed ID: 33690520
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aberration optimization in an extreme ultraviolet lithography projector via a BP neural network and simulated annealing algorithm.
    Zhao R; Dong L; Chen R; Wei Y
    Appl Opt; 2021 Feb; 60(5):1341-1348. PubMed ID: 33690577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design method for an off-axis reflective anamorphic optical system with aberration balance and constraint control.
    Wu Y; Wang L; Zhang X; Yu J; Yu B; Jin C
    Appl Opt; 2021 Jun; 60(16):4557-4566. PubMed ID: 34143009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis and modulation of aberration in an extreme ultraviolet lithography projector via rigorous simulation and a back propagation neural network.
    Zhao R; Dong L; Bo C; Wei Y; Su X
    Appl Opt; 2020 Aug; 59(23):7074-7082. PubMed ID: 32788802
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Method to construct the initial structure of optical systems based on full-field aberration correction.
    Chen X; Zhang X; Su Z; Yu J; Wang L
    Appl Opt; 2023 Jun; 62(17):4571-4582. PubMed ID: 37707154
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study of the Off-Axis Fresnel Zone Plate of a Microscopic Tomographic Aberration.
    Yang L; Ma Z; Liu S; Jiao Q; Zhang J; Zhang W; Pei J; Li H; Li Y; Zou Y; Xu Y; Tan X
    Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35161858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of anamorphic magnification high-numerical aperture objective for extreme ultraviolet lithography by curvatures combination method.
    Liu Y; Li Y; Cao Z
    Appl Opt; 2016 Jun; 55(18):4917-23. PubMed ID: 27409118
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single spherical mirror optic for extreme ultraviolet lithography enabled by inverse lithography technology.
    Scranton G; Bhargava S; Ganapati V; Yablonovitch E
    Opt Express; 2014 Oct; 22(21):25027-42. PubMed ID: 25401536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aberration analysis and compensate method of a BP neural network and sparrow search algorithm in deep ultraviolet lithography.
    Zhang S; Zhang L; Gai T; Xu P; Wei Y
    Appl Opt; 2022 Jul; 61(20):6023-6032. PubMed ID: 36255838
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aberration budget analysis of EUV lithography from the imaging performance of a contact layer in a 5  nm technology node.
    Chen Z; Dong L; Ding H; Wei Y
    Appl Opt; 2023 Sep; 62(27):7270-7279. PubMed ID: 37855584
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Zernike monomials in wide field of view optical designs.
    Johnson TP; Sasian J
    Appl Opt; 2020 Aug; 59(22):G146-G153. PubMed ID: 32749327
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Off-axis four-mirror telescope with a wide field of view and a long focal length using double integrated mirrors.
    Zhu L; Xie H; Chen J; Yang T; Yang L
    Appl Opt; 2023 Oct; 62(29):7773-7782. PubMed ID: 37855486
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Initial structure design of coaxial six-ten mirror central-obscured extreme ultraviolet lithographic objective.
    Liu F; Li Y
    Appl Opt; 2014 Oct; 53(28):6444-51. PubMed ID: 25322231
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of beamline optics for EUVL.
    Watanabe T; Haga T; Niibe M; Kinoshita H
    J Synchrotron Radiat; 1998 May; 5(Pt 3):1149-52. PubMed ID: 15263775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.