These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 36256106)

  • 1. Modeling the hydrodynamic impact on the tool influence function during hemispherical subaperture optical polishing.
    Ray NJ; Suratwala T; Menapace J; Wong L; Steele W; Tham G; Bauman B
    Appl Opt; 2022 Jun; 61(18):5392-5400. PubMed ID: 36256106
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms influencing and prediction of tool influence function spots during hemispherical sub-aperture tool polishing on fused silica.
    Suratwala T; Menapace J; Steele R; Wong L; Tham G; Ray N; Bauman B; Gregory M; Hordin T
    Appl Opt; 2021 Jan; 60(1):201-214. PubMed ID: 33362091
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modified subaperture tool influence functions of a flat-pitch polisher with reverse-calculated material removal rate.
    Dong Z; Cheng H; Tam HY
    Appl Opt; 2014 Apr; 53(11):2455-64. PubMed ID: 24787418
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of workpiece curvature on the tool influence function during hemispherical sub-aperture tool glass polishing.
    Suratwala T; Menapace J; Tham G; Steele R; Wong L; Ray N; Bauman B; Gregory M; Hordin T
    Appl Opt; 2021 Feb; 60(4):1041-1050. PubMed ID: 33690410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling of edge effect in subaperture tool influence functions of computer controlled optical surfacing.
    Wan S; Zhang X; He X; Xu M
    Appl Opt; 2016 Dec; 55(36):10223-10228. PubMed ID: 28059243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Compensating for velocity truncation during subaperture polishing by controllable and time-variant tool influence functions.
    Dong Z; Cheng H; Tam HY
    Appl Opt; 2015 Feb; 54(5):1167-74. PubMed ID: 25968037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Smoothing tool design and performance during subaperture glass polishing.
    Suratwala T; Tham G; Steele R; Wong L; Menapace J; Ray N; Bauman B
    Appl Opt; 2023 Mar; 62(8):2061-2072. PubMed ID: 37133094
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removal of millimeter-scale rolled edges using bevel-cut-like tool influence function in magnetorheological jet polishing.
    Yang H; Cheng H; Feng Y; Jing X
    Appl Opt; 2018 May; 57(13):3377-3384. PubMed ID: 29726504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Parametric modeling of edge effects for polishing tool influence functions.
    Kim DW; Park WH; Kim SW; Burge JH
    Opt Express; 2009 Mar; 17(7):5656-65. PubMed ID: 19333334
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Statistical perception of the chaotic fabrication error and the self-adaptive processing decision in ultra-precision optical polishing.
    Li H; Wan S; Niu Z; Guo H; Zhang L; Lu Q; Wei C; Shao J
    Opt Express; 2023 Feb; 31(5):7707-7724. PubMed ID: 36859896
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of contact pressure and influence function model for soft wheel polishing.
    Rao Z; Guo B; Zhao Q
    Appl Opt; 2015 Sep; 54(27):8091-9. PubMed ID: 26406510
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modified dwell time optimization model and its applications in subaperture polishing.
    Dong Z; Cheng H; Tam HY
    Appl Opt; 2014 May; 53(15):3213-24. PubMed ID: 24922206
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrasmooth surface polishing based on the hydrodynamic effect.
    Peng W; Guan C; Li S
    Appl Opt; 2013 Sep; 52(25):6411-6. PubMed ID: 24085104
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Line contact ring magnetorheological finishing process for precision polishing of optics.
    Kumar Baghel P; Singh Gavel K; Sayeed Khan G; Kumar R
    Appl Opt; 2022 Apr; 61(10):2582-2590. PubMed ID: 35471326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Curvature effect-based modeling and experimentation of the material removal in polishing optical surfaces using a flexible ball-end tool.
    Shi C; Wang C; Cheung CF; Zhang Z; Li Z; Ho LT; Deng W; Zhang X
    Opt Express; 2022 Jul; 30(14):24611-24638. PubMed ID: 36237012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical Modeling Method for Material Removal Characteristics of Abrasive Water Jet Polishing under Rotating Oblique Incidence.
    Zhang Z; Song C; Shi F; Tie G; Zhang W; Wang B; Tian Y; Hou Z
    Micromachines (Basel); 2022 Oct; 13(10):. PubMed ID: 36296043
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal Modeling and Experimental Verification of Magnetorheological Polishing Fused Silica Glass.
    Zhang L; Li W; Zhou J; Lu M; Liu Q; Du Y; Yang Y
    Micromachines (Basel); 2022 Dec; 14(1):. PubMed ID: 36677115
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Edge effect in fluid jet polishing.
    Guo P; Fang H; Yu J
    Appl Opt; 2006 Sep; 45(26):6729-35. PubMed ID: 16926905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Edge effect modeling and experiments on active lap processing.
    Liu H; Wu F; Zeng Z; Fan B; Wan Y
    Opt Express; 2014 May; 22(9):10761-74. PubMed ID: 24921777
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization technique for rolled edge control process based on the acentric tool influence functions.
    Du H; Song C; Li S; Xu M; Peng X
    Appl Opt; 2017 May; 56(15):4330-4337. PubMed ID: 29047857
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.