These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 36256130)

  • 1. Thermal-optical characteristics analysis of an aerial camera optical system.
    Wang D; Li Z; Lin J; Lu M; Li Y; Ran T
    Appl Opt; 2022 Oct; 61(28):8190-8196. PubMed ID: 36256130
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Achromatic and Athermal Design of Aerial Catadioptric Optical Systems by Efficient Optimization of Materials.
    Li J; Ding Y; Liu X; Yuan G; Cai Y
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850352
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of microvibration on the optical performance of an airborne camera.
    Lin J; Zhou Y; Wang H; Gu Y; Gao M; Guo X; Xu H
    Appl Opt; 2021 Feb; 60(5):1283-1293. PubMed ID: 33690571
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Opto-thermal deformation fitting method based on a neural network and a transfer learning.
    Pan Y; Hu M; Zhang K; Xu X
    Opt Lett; 2023 Nov; 48(22):5851-5854. PubMed ID: 37966735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Environmental Stability Design of the Aerial Mapping Camera Based on Multi-Dimensional Compound Structure.
    Yang H; Yuan G; Pan J; Zhou D
    Sensors (Basel); 2023 Apr; 23(9):. PubMed ID: 37177622
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrated optomechanical analyses and experimental verification for a thermal system of an aerial camera.
    Xue ZP; Wang CX; Yu Y; Wang PP; Zhang HY; Sui YY; Li M; Luo ZY
    Appl Opt; 2019 Sep; 58(26):6996-7005. PubMed ID: 31503973
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lumped Parameter Thermal Network Modeling and Thermal Optimization Design of an Aerial Camera.
    Fan Y; Feng W; Ren Z; Liu B; Wang D
    Sensors (Basel); 2024 Jun; 24(12):. PubMed ID: 38931764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Method for studying the effects of thermal deformations on optical systems for space application.
    Segato E; Da Deppo V; Debei S; Naletto G; Cremonese G; Flamini E
    Appl Opt; 2011 Jun; 50(18):2836-45. PubMed ID: 21691346
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and Optimization for Mounting Primary Mirror with Reduced Sensitivity to Temperature Change in an Aerial Optoelectronic Sensor.
    Zhang M; Lu Q; Tian H; Wang D; Chen C; Wang X
    Sensors (Basel); 2021 Nov; 21(23):. PubMed ID: 34883996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multidisciplinary integrated optimal design process for optomechanical structures.
    Kim CH; Kim JN; Kim SC; Yun MS; Kim GJ; Han YG
    Appl Opt; 2023 Sep; 62(26):6871-6876. PubMed ID: 37707024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of the influence of vibrations on the imaging quality of an integrated TDICCD aerial camera.
    Zhou X; Liu H; Li Y; Ma M; Liu Q; Lin J
    Opt Express; 2021 Jun; 29(12):18108-18121. PubMed ID: 34154077
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relationship analysis between transient thermal control mode and image quality for an aerial camera.
    Liu W; Xu Y; Yao Y; Xu Y; Shen H; Ding Y
    Appl Opt; 2017 Feb; 56(4):1028-1036. PubMed ID: 28158109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multilayer thermal control for high-altitude vertical imaging aerial cameras.
    Li Y; Yuan G; Xie X; Dong L; Yin L
    Appl Opt; 2022 Jun; 61(17):5205-5214. PubMed ID: 36256203
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ambient temperature effect on the imaging quality of an aspherical airborne camera: theoretical and experimental analysis.
    Tian J; Lin J; Lu M; Ran T; Zhou J
    Appl Opt; 2021 May; 60(13):3668-3676. PubMed ID: 33983299
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of ambient temperature on the modulation transfer function of an infrared membrane diffraction optical system.
    Wang D; Zhi X; Zhang W; Yin Z; Jiang S; Niu R
    Appl Opt; 2018 Oct; 57(30):9096-9105. PubMed ID: 30461899
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of Thermal Control Measures on the Imaging Quality of an Aerial Optoelectronic Sensor.
    Liu F; Cheng Z; Jia P; Zhang B; Liu X; Hu R
    Sensors (Basel); 2019 Jun; 19(12):. PubMed ID: 31248131
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptive thermal refocusing system for a high-resolution space camera.
    Li W; Lv Q; Zhao N; Wang J; Liu Y; Zheng T
    Appl Opt; 2022 Jan; 61(3):699-709. PubMed ID: 35200774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of Thermal Control Design for Aerial Reflective Opto-Mechanical Structure.
    Wang H; Zhou Y; Jiang X; Zuo X; Chen M
    Sensors (Basel); 2024 Feb; 24(4):. PubMed ID: 38400353
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-mirror aerial mapping camera design with a tilted-aplanatic secondary mirror for image motion compensation.
    Liu X; Yuan D; Song L; Yuan G; Zhang H; Ding Y; Zhang C
    Opt Express; 2023 Jan; 31(3):4108-4121. PubMed ID: 36785386
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Application of a Topology Optimization Algorithm Based on the Kriging Surrogate Model in the Mirror Design and Optimization of an Aerial Camera.
    Zhao Y; Li L
    Sensors (Basel); 2023 Aug; 23(16):. PubMed ID: 37631772
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.