These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 36256204)

  • 21. Direct generation of starting points for freeform off-axis three-mirror imaging system design using neural network based deep-learning.
    Yang T; Cheng D; Wang Y
    Opt Express; 2019 Jun; 27(12):17228-17238. PubMed ID: 31252936
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Freeform off-axis optical system with multiple sets of performance integrations.
    Tang R; Jin G; Zhu J
    Opt Lett; 2019 Jul; 44(13):3362-3365. PubMed ID: 31259961
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Automated freeform imaging system design with generalized ray tracing and simultaneous multi-surface analytic calculation.
    Nie Y; Shafer DR; Ottevaere H; Thienpont H; Duerr F
    Opt Express; 2021 May; 29(11):17227-17245. PubMed ID: 34154269
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Design method of nonsymmetric imaging systems consisting of multiple flat phase elements.
    Yang T; Cheng D; Wang Y
    Opt Express; 2018 Sep; 26(19):25347-25363. PubMed ID: 30469637
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Customized design and efficient fabrication of two freeform aluminum mirrors by single point diamond turning technique.
    Shen Z; Yu J; Song Z; Chen L; Yuan Q; Gao Z; Pei S; Liu B; Ye J
    Appl Opt; 2019 Mar; 58(9):2269-2276. PubMed ID: 31044929
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cooled infrared off-axis freeform three-mirror system design with convenience in testing and assembly.
    Zhu D; Zhang Y; Hu Z; Liu Y; Guo P; Su J
    Appl Opt; 2022 Dec; 61(36):10794-10800. PubMed ID: 36606940
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Design of freeform imaging systems with linear field-of-view using a construction and iteration process.
    Yang T; Zhu J; Jin G
    Opt Express; 2014 Feb; 22(3):3362-74. PubMed ID: 24663627
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Theory of aberration fields for general optical systems with freeform surfaces.
    Fuerschbach K; Rolland JP; Thompson KP
    Opt Express; 2014 Nov; 22(22):26585-606. PubMed ID: 25401809
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Construction method through multiple off-axis parabolic surfaces expansion and mixing to design an easy-aligned freeform spectrometer.
    Chen L; Gao Z; Ye J; Cao X; Xu N; Yuan Q
    Opt Express; 2019 Sep; 27(18):25994-26013. PubMed ID: 31510461
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Aberration analysis for freeform surface terms overlay on general decentered and tilted optical surfaces.
    Yang T; Cheng D; Wang Y
    Opt Express; 2018 Mar; 26(6):7751-7770. PubMed ID: 29609326
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Improvement of Scheimpflug systems with freeform surfaces.
    Zhong Y; Gross H
    Appl Opt; 2018 Feb; 57(6):1482-1491. PubMed ID: 29469853
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Double freeform surfaces design for beam shaping with non-planar wavefront using an integrable ray mapping method.
    Wei S; Zhu Z; Fan Z; Yan Y; Ma D
    Opt Express; 2019 Sep; 27(19):26757-26771. PubMed ID: 31674551
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Design of an off-axis near-eye AR display system based on a full-color freeform holographic optical element.
    Wang Y; Yang T; Ni D; Cheng D; Wang Y
    Opt Lett; 2023 Mar; 48(5):1288-1291. PubMed ID: 36857270
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Design of a linear field-of-view oblique imaging system with a low distortion.
    Xu C; Gong C; Wang Y; Song W
    Appl Opt; 2022 Jun; 61(17):5189-5197. PubMed ID: 36256201
    [TBL] [Abstract][Full Text] [Related]  

  • 35. General design method for dynamic freeform optics with variable functionality.
    Shadalou S; Suleski TJ
    Opt Express; 2022 May; 30(11):19974-19989. PubMed ID: 36221759
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hybrid optical (freeform) components--functionalization of nonplanar optical surfaces by direct picosecond laser ablation.
    Kleindienst R; Kampmann R; Stoebenau S; Sinzinger S
    Appl Opt; 2011 Jul; 50(19):3221-8. PubMed ID: 21743521
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improvement of a computer-aided alignment algorithm for the nonsymmetric off-axis reflective telescope.
    He X; Luo J; Wang J; Zhang X; Liu Y
    Appl Opt; 2021 Mar; 60(8):2127-2140. PubMed ID: 33690307
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Assembly of a freeform off-axis optical system employing three φ-polynomial Zernike mirrors.
    Fuerschbach K; Davis GE; Thompson KP; Rolland JP
    Opt Lett; 2014 May; 39(10):2896-9. PubMed ID: 24978231
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Automatic design method of starting points of freeform off-axis reflective imaging systems of small volume.
    Liu X; Zhu J
    Opt Express; 2022 Feb; 30(5):7954-7967. PubMed ID: 35299547
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Design of a head-up display based on freeform reflective systems for automotive applications.
    Wei S; Fan Z; Zhu Z; Ma D
    Appl Opt; 2019 Mar; 58(7):1675-1681. PubMed ID: 30874198
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.