These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 36256283)

  • 1. Evaluation of a Gaussian dispersion transformation technique for tomographic mapping of the concentration field of atmospheric chemicals using multi-path optical remote sensing.
    Li S; Xing Z; Du K
    Appl Opt; 2022 May; 61(15):4449-4457. PubMed ID: 36256283
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluating the performance of the horizontal radial plume mapping technique for locating multiple plumes.
    Chang SY; Wu CF
    J Air Waste Manag Assoc; 2012 Nov; 62(11):1249-56. PubMed ID: 23210216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Locating pollutant emission sources with optical remote sensing measurements and an improved one-dimensional radial plume mapping technique.
    Wu CF; Lin SC; Yeh CK
    J Environ Monit; 2012 Apr; 14(4):1203-10. PubMed ID: 22382995
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical evaluation of a method for locating gaseous emission hot spots.
    Hashmonay RA
    J Air Waste Manag Assoc; 2008 Aug; 58(8):1100-6. PubMed ID: 18720659
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulation of atmospheric dispersion of radionuclides using an Eulerian-Lagrangian modelling system.
    Basit A; Espinosa F; Avila R; Raza S; Irfan N
    J Radiol Prot; 2008 Dec; 28(4):539-61. PubMed ID: 19029589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accuracy of vertical radial plume mapping technique in measuring lagoon gas emissions.
    Viguria M; Ro KS; Stone KC; Johnson MH
    J Air Waste Manag Assoc; 2015 Apr; 65(4):395-403. PubMed ID: 25947209
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimisation of dispersion parameters of Gaussian plume model for CO₂ dispersion.
    Liu X; Godbole A; Lu C; Michal G; Venton P
    Environ Sci Pollut Res Int; 2015 Nov; 22(22):18288-99. PubMed ID: 26374541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mapping the air in real-time to visualize the flow of gases and vapors: occupational and environmental applications.
    Todd LA
    Appl Occup Environ Hyg; 2000 Jan; 15(1):106-13. PubMed ID: 10660996
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Gaussian atmospheric transport model and its sensitivity to the joint frequency distribution and parametric variability.
    Hamby DM
    Health Phys; 2002 Jan; 82(1):64-73. PubMed ID: 11768800
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement of greenhouse gas emissions from agricultural sites using open-path optical remote sensing method.
    Ro KS; Johnson MH; Varma RM; Hashmonay RA; Hunt P
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2009 Aug; 44(10):1011-8. PubMed ID: 19827493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantifying methane emission from fugitive sources by combining tracer release and downwind measurements - a sensitivity analysis based on multiple field surveys.
    Mønster JG; Samuelsson J; Kjeldsen P; Rella CW; Scheutz C
    Waste Manag; 2014 Aug; 34(8):1416-28. PubMed ID: 24759753
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparisons of forward-in-time and backward-in-time Lagrangian stochastic dispersion models for micro-scale atmospheric dispersion.
    Li S; Du K
    J Air Waste Manag Assoc; 2020 Apr; 70(4):425-435. PubMed ID: 32039658
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulations of dispersion through an irregular urban building array.
    Pirhalla M; Heist D; Perry S; Tang W; Brouwer L
    Atmos Environ (1994); 2021 Aug; 258():. PubMed ID: 34526852
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Reconstruction of Water Hyperspectral Remote Sensing Reflectance Based on Sparse Representation and Its Application].
    Li Y; Li YM; Guo YL; Zhang YL; Zhang YB; Hu YD; Xia Z
    Huan Jing Ke Xue; 2019 Jan; 40(1):200-210. PubMed ID: 30628276
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Near-field dynamics and plume dispersion after an on-road truck: Implication to remote sensing.
    Xie J; Liu CH; Mo Z; Huang Y; Mok WC
    Sci Total Environ; 2020 Dec; 748():141211. PubMed ID: 32814285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature Distribution Reconstruction Method for Acoustic Tomography Based on Compressed Sensing.
    Yan H; Wei Y; Zhou Y; Wang Y
    Ultrason Imaging; 2022 May; 44(2-3):77-95. PubMed ID: 35531862
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconstruction of air contaminant concentration distribution in a two-dimensional plane by computed tomography and remote sensing FTIR spectroscopy.
    Ren Y; Li Y; Wang J; Wang X; Liu B; Zhang L; Zhang L
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2005; 40(3):571-80. PubMed ID: 15756968
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel algorithm for tomographic reconstruction of atmospheric chemicals with sparse sampling.
    Verkruysse W; Todd LA
    Environ Sci Technol; 2005 Apr; 39(7):2247-54. PubMed ID: 15871260
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Localizing gaseous fugitive emission sources by combining real-time optical remote sensing and wind data.
    Hashmonay RA; Yost MG
    J Air Waste Manag Assoc; 1999 Nov; 49(11):1374-9. PubMed ID: 10589296
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An inversion algorithm for determining area-source emissions from downwind concentration measurements.
    Lehning M; Shonnard DR; Chang DP; Bell RL
    Air Waste; 1994 Oct; 44(10):1204-13. PubMed ID: 7812684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.