These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 36256368)

  • 1. Terahertz angle-independent photonic bandgap in a one-dimensional photonic crystal containing InSb-based hyperbolic metamaterials.
    Wu F; Yu X; Panda A; Liu D
    Appl Opt; 2022 Sep; 61(26):7677-7684. PubMed ID: 36256368
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photonic bandgap engineering in hybrid one-dimensional photonic crystals containing all-dielectric elliptical metamaterials.
    Wu F; Liu T; Chen M; Xiao S
    Opt Express; 2022 Sep; 30(19):33911-33925. PubMed ID: 36242416
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A redshifted photonic bandgap and wide-angle polarization selection in an all-hyperbolic-metamaterial one-dimensional photonic crystal.
    Wu F; Liu D; Li H; Feng M
    Phys Chem Chem Phys; 2023 Apr; 25(15):10785-10794. PubMed ID: 37010824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polarization-sensitive photonic bandgaps in hybrid one-dimensional photonic crystals composed of all-dielectric elliptical metamaterials and isotropic dielectrics.
    Wu F; Liu T; Xiao S
    Appl Opt; 2023 Jan; 62(3):706-713. PubMed ID: 36821275
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultra-large near-infrared omnidirectional photonic bandgaps in cascaded one-dimensional photonic crystals containing all-dielectric metamaterials.
    Cheng Z; She Y; Panda A; Feng M; Li J; Wu F
    Appl Opt; 2023 Sep; 62(25):6625-6630. PubMed ID: 37706794
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Angle-insensitive topological interface states in hybrid one-dimensional photonic crystal heterostructures containing all-dielectric metamaterials.
    Wu F; Li H; Hu S; Chen Y; Long Y
    Opt Lett; 2023 Jun; 48(11):3035-3038. PubMed ID: 37262274
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Omnidirectional photonic bandgap in one-dimensional photonic crystals containing hyperbolic metamaterials.
    Lu G; Zhou X; Zhao Y; Zhang K; Zhou H; Li J; Diao C; Liu F; Wu A; Du G
    Opt Express; 2021 Sep; 29(20):31915-31923. PubMed ID: 34615273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Near-infrared ITO-based photonic hypercrystals with large angle-insensitive bandgaps.
    Shen KS; Li XK; Zheng Y; Liu HC; Dong SQ; Zhang J; Xia SQ; Dong C; Sun XL; Zhang XZ; Xue CH; Lu H
    Opt Lett; 2022 Feb; 47(4):917-920. PubMed ID: 35167558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Broadband wide-angle multilayer absorber based on a broadband omnidirectional optical Tamm state.
    Wu F; Wu X; Xiao S; Liu G; Li H
    Opt Express; 2021 Jul; 29(15):23976-23987. PubMed ID: 34614651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wide-angle high-efficiency absorption of graphene empowered by an angle-insensitive Tamm plasmon polariton.
    Wu F; Xiao S
    Opt Express; 2023 Feb; 31(4):5722-5735. PubMed ID: 36823845
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiplication of photonic band gaps in one-dimensional photonic crystals by using hyperbolic metamaterial in IR range.
    Mohamed AG; Sabra W; Mehaney A; Aly AH; Elsayed HA
    Sci Rep; 2023 Jan; 13(1):324. PubMed ID: 36609630
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Omnidirectional nonreciprocal absorber realized by the magneto-optical hypercrystal.
    Hu S; Song J; Guo Z; Jiang H; Deng F; Dong L; Chen H
    Opt Express; 2022 Mar; 30(7):12104-12119. PubMed ID: 35473139
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of temperature on terahertz photonic and omnidirectional band gaps in one-dimensional quasi-periodic photonic crystals composed of semiconductor InSb.
    Singh BK; Pandey PC
    Appl Opt; 2016 Jul; 55(21):5684-92. PubMed ID: 27463924
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Omnidirectional defect mode in one-dimensional photonic crystal with a (chiral) hyperbolic metamaterial defect.
    Wei Q; Wu J; Guo Z; Sun Y; Li Y; Jiang H; Yang Y; Chen H
    Opt Express; 2023 Jan; 31(2):1432-1441. PubMed ID: 36785178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wide-angle polarization selectivity based on anomalous defect mode in photonic crystal containing hyperbolic metamaterials.
    Wu F; Chen M; Xiao S
    Opt Lett; 2022 May; 47(9):2153-2156. PubMed ID: 35486747
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Broadband omnidirectional near-infrared reflector based on an angle-insensitive photonic band gap.
    Wu F; Chen M; Liu D; Chen Y; Long Y
    Appl Opt; 2020 Oct; 59(30):9621-9625. PubMed ID: 33104685
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Terahertz angle-independent photonic bandgap in a one-dimensional photonic crystal containing InSb-based hyperbolic metamaterials: erratum.
    Wu F; Yu X; Panda A; Liu D
    Appl Opt; 2023 Aug; 62(23):6297. PubMed ID: 37707099
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spherical colloidal photonic crystals.
    Zhao Y; Shang L; Cheng Y; Gu Z
    Acc Chem Res; 2014 Dec; 47(12):3632-42. PubMed ID: 25393430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Periodic and quasi-periodic one-dimensional extrinsically magnetized photonic crystals with robust photonic bandgaps.
    Biswal A
    Appl Opt; 2023 Oct; 62(30):8197-8203. PubMed ID: 38038118
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Terahertz demonstrations of effectively two-dimensional photonic bandgap structures.
    Zhao Y; Grischkowsky D
    Opt Lett; 2006 May; 31(10):1534-6. PubMed ID: 16642163
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.