These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 36256409)

  • 1. PredictionNet: a long short-term memory-based attention network for atmospheric turbulence prediction in adaptive optics.
    Wu J; Tang J; Zhang M; Di J; Hu L; Wu X; Liu G; Zhao J
    Appl Opt; 2022 May; 61(13):3687-3694. PubMed ID: 36256409
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance of the neural network-based prediction model in closed-loop adaptive optics.
    Wang N; Zhu L; Yuan Q; Ge X; Gao Z; Wang S; Yang P
    Opt Lett; 2024 Jun; 49(11):2926-2929. PubMed ID: 38824294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance of real-time adaptive optics compensation in a turbulent channel with high-dimensional spatial-mode encoding.
    Zhao J; Zhou Y; Braverman B; Liu C; Pang K; Steinhoff NK; Tyler GA; Willner AE; Boyd RW
    Opt Express; 2020 May; 28(10):15376-15391. PubMed ID: 32403566
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly Stable Spatio-Temporal Prediction Network of Wavefront Sensor Slopes in Adaptive Optics.
    Wang N; Zhu L; Yuan Q; Ge X; Gao Z; Wang S; Yang P
    Sensors (Basel); 2023 Nov; 23(22):. PubMed ID: 38005646
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atmospheric Turbulence Aberration Correction Based on Deep Learning Wavefront Sensing.
    You J; Gu J; Du Y; Wan M; Xie C; Xiang Z
    Sensors (Basel); 2023 Nov; 23(22):. PubMed ID: 38005546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of time-variant turbulence behavior on prediction for adaptive optics systems.
    van Kooten M; Doelman N; Kenworthy M
    J Opt Soc Am A Opt Image Sci Vis; 2019 May; 36(5):731-740. PubMed ID: 31044999
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive optics pre-compensation for orbital angular momentum beams transmitting through simulated atmospheric turbulence.
    Xu Y; Lan B; Liu C; Chen M; Tang A; Xian H
    Opt Express; 2023 Apr; 31(9):13665-13671. PubMed ID: 37157249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generalizable turbulent flow forecasting for adaptive optics control.
    Shaffer BD; Vorenberg JR; Wilcox CC; McDaniel AJ
    Appl Opt; 2023 Aug; 62(23):G1-G11. PubMed ID: 37707057
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predictive correction method based on deep learning for a phase compensation system with frozen flow turbulence.
    Meng J; He J; Huang M; Li Y; Zhu B; Kong X; Han Z; Li X; Liu Y
    Opt Lett; 2022 Dec; 47(24):6417-6420. PubMed ID: 36538452
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved adaptive-optics performance using polychromatic speckle mitigation.
    Van Zandt NR; Spencer MF
    Appl Opt; 2020 Feb; 59(4):1071-1081. PubMed ID: 32225243
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of channel capacities of OAM-based FSO link with real-time wavefront correction by adaptive optics.
    Li M; Cvijetic M; Takashima Y; Yu Z
    Opt Express; 2014 Dec; 22(25):31337-46. PubMed ID: 25607082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNN-based aberration correction in a wavefront sensorless adaptive optics system.
    Tian Q; Lu C; Liu B; Zhu L; Pan X; Zhang Q; Yang L; Tian F; Xin X
    Opt Express; 2019 Apr; 27(8):10765-10776. PubMed ID: 31052929
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Jointly recognizing OAM mode and compensating wavefront distortion using one convolutional neural network.
    Lu C; Tian Q; Xin X; Liu B; Zhang Q; Wang Y; Tian F; Yang L; Gao R
    Opt Express; 2020 Dec; 28(25):37936-37945. PubMed ID: 33379617
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep turbulence effects compensation experiments with a cascaded adaptive optics system using a 3.63 m telescope.
    Vorontsov M; Riker J; Carhart G; Gudimetla VS; Beresnev L; Weyrauch T; Roberts LC
    Appl Opt; 2009 Jan; 48(1):A47-57. PubMed ID: 19107154
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of wavefront distortion for wavefront sensorless adaptive optics based on deep learning.
    Li Y; Yue D; He Y
    Appl Opt; 2022 May; 61(14):4168-4176. PubMed ID: 36256094
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterizing turbulence profile layers through celestial single-source observations.
    Laidlaw DJ; Reeves AP; Singhal H; Calvo RM
    Appl Opt; 2022 Jan; 61(2):498-504. PubMed ID: 35200889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Single Far-Field Deep Learning Adaptive Optics System Based on Four-Quadrant Discrete Phase Modulation.
    Qiu X; Cheng T; Kong L; Wang S; Xu B
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32911666
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance evaluation of adaptive optics for atmospheric coherent laser communications.
    Liu C; Chen S; Li X; Xian H
    Opt Express; 2014 Jun; 22(13):15554-63. PubMed ID: 24977813
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved Machine Learning Approach for Wavefront Sensing.
    Guo H; Xu Y; Li Q; Du S; He D; Wang Q; Huang Y
    Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31412562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance analysis of an adaptive optics system for free-space optics communication through atmospheric turbulence.
    Wang Y; Xu H; Li D; Wang R; Jin C; Yin X; Gao S; Mu Q; Xuan L; Cao Z
    Sci Rep; 2018 Jan; 8(1):1124. PubMed ID: 29348561
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.