BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 36256665)

  • 1. To pretrain or not? A systematic analysis of the benefits of pretraining in diabetic retinopathy.
    Srinivasan V; Strodthoff N; Ma J; Binder A; Müller KR; Samek W
    PLoS One; 2022; 17(10):e0274291. PubMed ID: 36256665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contrastive learning-based pretraining improves representation and transferability of diabetic retinopathy classification models.
    Alam MN; Yamashita R; Ramesh V; Prabhune T; Lim JI; Chan RVP; Hallak J; Leng T; Rubin D
    Sci Rep; 2023 Apr; 13(1):6047. PubMed ID: 37055475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing diagnostic deep learning via self-supervised pretraining on large-scale, unlabeled non-medical images.
    Tayebi Arasteh S; Misera L; Kather JN; Truhn D; Nebelung S
    Eur Radiol Exp; 2024 Feb; 8(1):10. PubMed ID: 38326501
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generalizability of Self-Supervised Training Models for Digital Pathology: A Multicountry Comparison in Colorectal Cancer.
    Shao Z; Dai L; Jonnagaddala J; Chen Y; Wang Y; Fang Z; Zhang Y
    JCO Clin Cancer Inform; 2023 Sep; 7():e2200178. PubMed ID: 37703507
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Benchmarking Self-Supervised Contrastive Learning Methods for Image-Based Plant Phenotyping.
    Ogidi FC; Eramian MG; Stavness I
    Plant Phenomics; 2023; 5():0037. PubMed ID: 37040288
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-supervised representation learning from 12-lead ECG data.
    Mehari T; Strodthoff N
    Comput Biol Med; 2022 Feb; 141():105114. PubMed ID: 34973584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Applying supervised contrastive learning for the detection of diabetic retinopathy and its severity levels from fundus images.
    Islam MR; Abdulrazak LF; Nahiduzzaman M; Goni MOF; Anower MS; Ahsan M; Haider J; Kowalski M
    Comput Biol Med; 2022 Jul; 146():105602. PubMed ID: 35569335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A survey of the impact of self-supervised pretraining for diagnostic tasks in medical X-ray, CT, MRI, and ultrasound.
    VanBerlo B; Hoey J; Wong A
    BMC Med Imaging; 2024 Apr; 24(1):79. PubMed ID: 38580932
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tissue Classification During Needle Insertion Using Self-Supervised Contrastive Learning and Optical Coherence Tomography.
    Bhattacharya D; Latus S; Behrendt F; Thimm F; Eggert D; Betz C; Schlaefer A
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38082740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ProtoCLIP: Prototypical Contrastive Language Image Pretraining.
    Chen D; Wu Z; Liu F; Yang Z; Zheng S; Tan Y; Zhou E
    IEEE Trans Neural Netw Learn Syst; 2023 Dec; PP():. PubMed ID: 38048244
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Weakly supervised training for eye fundus lesion segmentation in patients with diabetic retinopathy.
    Li Y; Zhu M; Sun G; Chen J; Zhu X; Yang J
    Math Biosci Eng; 2022 Mar; 19(5):5293-5311. PubMed ID: 35430865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-Shot Deep Learning of Diabetic Retinopathy With Potential Applications to Address Artificial Intelligence Bias in Retinal Diagnostics and Rare Ophthalmic Diseases.
    Burlina P; Paul W; Mathew P; Joshi N; Pacheco KD; Bressler NM
    JAMA Ophthalmol; 2020 Oct; 138(10):1070-1077. PubMed ID: 32880609
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EndoViT: pretraining vision transformers on a large collection of endoscopic images.
    Batić D; Holm F; Özsoy E; Czempiel T; Navab N
    Int J Comput Assist Radiol Surg; 2024 Jun; 19(6):1085-1091. PubMed ID: 38570373
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Comprehensive Framework for Long-Tailed Learning via Pretraining and Normalization.
    Kang N; Chang H; Ma B; Shan S
    IEEE Trans Neural Netw Learn Syst; 2024 Mar; 35(3):3437-3449. PubMed ID: 35895650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heuristic Attention Representation Learning for Self-Supervised Pretraining.
    Tran VN; Liu SH; Li YH; Wang JC
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35890847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-supervised pretraining improves the performance of classification of task functional magnetic resonance imaging.
    Shi C; Wang Y; Wu Y; Chen S; Hu R; Zhang M; Qiu B; Wang X
    Front Neurosci; 2023; 17():1199312. PubMed ID: 37434766
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimizing Vision Transformers for Histopathology: Pretraining and Normalization in Breast Cancer Classification.
    Baroni GL; Rasotto L; Roitero K; Tulisso A; Di Loreto C; Della Mea V
    J Imaging; 2024 Apr; 10(5):. PubMed ID: 38786562
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated detection of diabetic retinopathy using custom convolutional neural network.
    Albahli S; Ahmad Hassan Yar GN
    J Xray Sci Technol; 2022; 30(2):275-291. PubMed ID: 35001904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expert-validated estimation of diagnostic uncertainty for deep neural networks in diabetic retinopathy detection.
    Ayhan MS; Kühlewein L; Aliyeva G; Inhoffen W; Ziemssen F; Berens P
    Med Image Anal; 2020 Aug; 64():101724. PubMed ID: 32497870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. End-to-end diabetic retinopathy grading based on fundus fluorescein angiography images using deep learning.
    Gao Z; Jin K; Yan Y; Liu X; Shi Y; Ge Y; Pan X; Lu Y; Wu J; Wang Y; Ye J
    Graefes Arch Clin Exp Ophthalmol; 2022 May; 260(5):1663-1673. PubMed ID: 35066704
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.