BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 36256665)

  • 21. Vision Transformer-based recognition of diabetic retinopathy grade.
    Wu J; Hu R; Xiao Z; Chen J; Liu J
    Med Phys; 2021 Dec; 48(12):7850-7863. PubMed ID: 34693536
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Weakly Supervised Sensitive Heatmap framework to classify and localize diabetic retinopathy lesions.
    Al-Mukhtar M; Morad AH; Albadri M; Islam MDS
    Sci Rep; 2021 Dec; 11(1):23631. PubMed ID: 34880311
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Gray wolf optimization-extreme learning machine approach for diabetic retinopathy detection.
    Albadr MAA; Ayob M; Tiun S; Al-Dhief FT; Hasan MK
    Front Public Health; 2022; 10():925901. PubMed ID: 35979449
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Improving machine learning performance on small chemical reaction data with unsupervised contrastive pretraining.
    Wen M; Blau SM; Xie X; Dwaraknath S; Persson KA
    Chem Sci; 2022 Feb; 13(5):1446-1458. PubMed ID: 35222929
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Efficient Generation of Pretraining Samples for Developing a Deep Learning Brain Injury Model via Transfer Learning.
    Lin N; Wu S; Wu Z; Ji S
    Ann Biomed Eng; 2023 Aug; ():. PubMed ID: 37642795
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Noise can speed backpropagation learning and deep bidirectional pretraining.
    Kosko B; Audhkhasi K; Osoba O
    Neural Netw; 2020 Sep; 129():359-384. PubMed ID: 32599541
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Influence of Age and Gender Information on the Diagnosis of Diabetic Retinopathy: Based on Neural Networks.
    Bai L; Chen S; Gao M; Abdelrahman L; Ghamdi MA; Abdel-Mottaleb M
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():3514-3517. PubMed ID: 34891997
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Adversarial Attack and Defence through Adversarial Training and Feature Fusion for Diabetic Retinopathy Recognition.
    Lal S; Rehman SU; Shah JH; Meraj T; Rauf HT; Damaševičius R; Mohammed MA; Abdulkareem KH
    Sensors (Basel); 2021 Jun; 21(11):. PubMed ID: 34200216
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Robust Collaborative Learning of Patch-Level and Image-Level Annotations for Diabetic Retinopathy Grading From Fundus Image.
    Yang Y; Shang F; Wu B; Yang D; Wang L; Xu Y; Zhang W; Zhang T
    IEEE Trans Cybern; 2022 Nov; 52(11):11407-11417. PubMed ID: 33961571
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Are Convolutional Neural Networks Trained on ImageNet Images Wearing Rose-Colored Glasses?: A Quantitative Comparison of ImageNet, Computed Tomographic, Magnetic Resonance, Chest X-Ray, and Point-of-Care Ultrasound Images for Quality.
    Blaivas L; Blaivas M
    J Ultrasound Med; 2021 Feb; 40(2):377-383. PubMed ID: 32757235
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Semi Supervised Learning with Deep Embedded Clustering for Image Classification and Segmentation.
    Enguehard J; O'Halloran P; Gholipour A
    IEEE Access; 2019; 7():11093-11104. PubMed ID: 31588387
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Deep image mining for diabetic retinopathy screening.
    Quellec G; Charrière K; Boudi Y; Cochener B; Lamard M
    Med Image Anal; 2017 Jul; 39():178-193. PubMed ID: 28511066
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Deep Convolutional Neural Network-Based Early Automated Detection of Diabetic Retinopathy Using Fundus Image.
    Xu K; Feng D; Mi H
    Molecules; 2017 Nov; 22(12):. PubMed ID: 29168750
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multi-Cell Multi-Task Convolutional Neural Networks for Diabetic Retinopathy Grading.
    Zhou K; Gu Z; Liu W; Luo W; Cheng J; Gao S; Liu J
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2724-2727. PubMed ID: 30440966
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Understanding How Pretraining Regularizes Deep Learning Algorithms.
    Yao Y; Yu B; Gong C; Liu T
    IEEE Trans Neural Netw Learn Syst; 2023 Sep; 34(9):5828-5840. PubMed ID: 34890343
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bimodal learning via trilogy of skip-connection deep networks for diabetic retinopathy risk progression identification.
    Hua CH; Huynh-The T; Kim K; Yu SY; Le-Tien T; Park GH; Bang J; Khan WA; Bae SH; Lee S
    Int J Med Inform; 2019 Dec; 132():103926. PubMed ID: 31605882
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Deep feed forward neural network-based screening system for diabetic retinopathy severity classification using the lion optimization algorithm.
    Vasireddi HK; K SD; G N V RR
    Graefes Arch Clin Exp Ophthalmol; 2022 Apr; 260(4):1245-1263. PubMed ID: 34505925
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Explainable Diabetic Retinopathy using EfficientNET
    Chetoui M; Akhloufi MA
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():1966-1969. PubMed ID: 33018388
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effective methods of diabetic retinopathy detection based on deep convolutional neural networks.
    Gu Y; Wang X; Pan J; Yong Z; Guo S; Pan T; Jiao Y; Zhou Z
    Int J Comput Assist Radiol Surg; 2021 Dec; 16(12):2177-2187. PubMed ID: 34606059
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Small Data Challenges in Big Data Era: A Survey of Recent Progress on Unsupervised and Semi-Supervised Methods.
    Qi GJ; Luo J
    IEEE Trans Pattern Anal Mach Intell; 2022 Apr; 44(4):2168-2187. PubMed ID: 33074801
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.