These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 36256715)

  • 1. Stochastic Optimal Control for Robot Manipulation Skill Learning Under Time-Varying Uncertain Environment.
    Liu X; Liu Z; Huang P
    IEEE Trans Cybern; 2024 Apr; 54(4):2015-2025. PubMed ID: 36256715
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural Networks Enhanced Optimal Admittance Control of Robot-Environment Interaction Using Reinforcement Learning.
    Peng G; Chen CLP; Yang C
    IEEE Trans Neural Netw Learn Syst; 2022 Sep; 33(9):4551-4561. PubMed ID: 33651696
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimal critic learning for robot control in time-varying environments.
    Wang C; Li Y; Ge SS; Lee TH
    IEEE Trans Neural Netw Learn Syst; 2015 Oct; 26(10):2301-10. PubMed ID: 25585427
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peg-in-hole assembly skill imitation learning method based on ProMPs under task geometric representation.
    Zang Y; Wang P; Zha F; Guo W; Zheng C; Sun L
    Front Neurorobot; 2023; 17():1320251. PubMed ID: 38023454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reference Trajectory Reshaping Optimization and Control of Robotic Exoskeletons for Human-Robot Co-Manipulation.
    Wu X; Li Z; Kan Z; Gao H
    IEEE Trans Cybern; 2020 Aug; 50(8):3740-3751. PubMed ID: 31484148
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential Game-Based Control for Nonlinear Human-Robot Interaction System With Unknown Desired Trajectory.
    Tong K; Li M; Qin J; Ma Q; Zhang J; Liu Q
    IEEE Trans Cybern; 2024 Nov; 54(11):6832-6842. PubMed ID: 38829764
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robotic Impedance Learning for Robot-Assisted Physical Training.
    Li Y; Zhou X; Zhong J; Li X
    Front Robot AI; 2019; 6():78. PubMed ID: 33501093
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of linearly solvable Markov decision process with dynamic model learning in a mobile robot navigation task.
    Kinjo K; Uchibe E; Doya K
    Front Neurorobot; 2013; 7():7. PubMed ID: 23576983
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of continuum robot arms under reinforcement learning and derived improvements.
    Morimoto R; Ikeda M; Niiyama R; Kuniyoshi Y
    Front Robot AI; 2022; 9():895388. PubMed ID: 36119726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Guided Stochastic Optimization for Motion Planning.
    Magyar B; Tsiogkas N; Brito B; Patel M; Lane D; Wang S
    Front Robot AI; 2019; 6():105. PubMed ID: 33501120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Adaptive Imitation Learning Framework for Robotic Complex Contact-Rich Insertion Tasks.
    Wang Y; Beltran-Hernandez CC; Wan W; Harada K
    Front Robot AI; 2021; 8():777363. PubMed ID: 35087872
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An optimization technique for identifying robot manipulator parameters under uncertainty.
    Li KL; Yang WT; Chan KY; Lin PC
    Springerplus; 2016; 5(1):1771. PubMed ID: 27795913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bayesian optimization with unknown constraints in graphical skill models for compliant manipulation tasks using an industrial robot.
    Gabler V; Wollherr D
    Front Robot AI; 2022; 9():993359. PubMed ID: 36313253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient Force Control Learning System for Industrial Robots Based on Variable Impedance Control.
    Li C; Zhang Z; Xia G; Xie X; Zhu Q
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30081474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Configuration-Dependent Optimal Impedance Control of an Upper Extremity Stroke Rehabilitation Manipulandum.
    Ghannadi B; Sharif Razavian R; McPhee J
    Front Robot AI; 2018; 5():124. PubMed ID: 33501003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Framework for Composite Layup Skill Learning and Generalizing Through Teleoperation.
    Si W; Wang N; Li Q; Yang C
    Front Neurorobot; 2022; 16():840240. PubMed ID: 35250529
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimal Robot-Environment Interaction Under Broad Fuzzy Neural Adaptive Control.
    Huang H; Yang C; Chen CLP
    IEEE Trans Cybern; 2021 Jul; 51(7):3824-3835. PubMed ID: 32568718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robust Admittance Control of Optimized Robot-Environment Interaction Using Reference Adaptation.
    Peng G; Chen CLP; Yang C
    IEEE Trans Neural Netw Learn Syst; 2023 Sep; 34(9):5804-5815. PubMed ID: 34982696
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bridging Reinforcement Learning and Iterative Learning Control: Autonomous Motion Learning for Unknown, Nonlinear Dynamics.
    Meindl M; Lehmann D; Seel T
    Front Robot AI; 2022; 9():793512. PubMed ID: 35903721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A robust position/force learning controller of manipulators via nonlinear Hinfinity control and neural networks.
    Hwang MC; Hu X
    IEEE Trans Syst Man Cybern B Cybern; 2000; 30(2):310-21. PubMed ID: 18244757
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.