These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 36256812)

  • 1. Universal structural requirements for maximal robust perfect adaptation in biomolecular networks.
    Gupta A; Khammash M
    Proc Natl Acad Sci U S A; 2022 Oct; 119(43):e2207802119. PubMed ID: 36256812
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Perfect adaptation in biology.
    Khammash MH
    Cell Syst; 2021 Jun; 12(6):509-521. PubMed ID: 34139163
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A universal biomolecular integral feedback controller for robust perfect adaptation.
    Aoki SK; Lillacci G; Gupta A; Baumschlager A; Schweingruber D; Khammash M
    Nature; 2019 Jun; 570(7762):533-537. PubMed ID: 31217585
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stabilization of antithetic control via molecular buffering.
    Hancock EJ; OyarzĂșn DA
    J R Soc Interface; 2022 Mar; 19(188):20210762. PubMed ID: 35259958
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design Principles for Perfect Adaptation in Biological Networks with Nonlinear Dynamics.
    Bhattacharya P; Raman K; Tangirala AK
    Bull Math Biol; 2024 Jul; 86(8):100. PubMed ID: 38958824
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The topological requirements for robust perfect adaptation in networks of any size.
    Araujo RP; Liotta LA
    Nat Commun; 2018 May; 9(1):1757. PubMed ID: 29717141
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design Principles Underlying Robust Adaptation of Complex Biochemical Networks.
    Araujo RP; Liotta LA
    Methods Mol Biol; 2023; 2634():3-32. PubMed ID: 37074572
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On biological networks capable of robust adaptation in the presence of uncertainties: A linear systems-theoretic approach.
    Bhattacharya P; Raman K; Tangirala AK
    Math Biosci; 2023 Apr; 358():108984. PubMed ID: 36804384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Guidelines for designing the antithetic feedback motif.
    Baetica AA; Leong YP; Murray RM
    Phys Biol; 2020 Aug; 17(5):055002. PubMed ID: 32217822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of biomolecular network modifications to achieve adaptation.
    Waldherr S; Streif S; Allgöwer F
    IET Syst Biol; 2012 Dec; 6(6):223-31. PubMed ID: 23560327
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthetic robust perfect adaptation achieved by negative feedback coupling with linear weak positive feedback.
    Sun Z; Wei W; Zhang M; Shi W; Zong Y; Chen Y; Yang X; Yu B; Tang C; Lou C
    Nucleic Acids Res; 2022 Feb; 50(4):2377-2386. PubMed ID: 35166832
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design principles for the analysis and construction of robustly homeostatic biological networks.
    Tang ZF; McMillen DR
    J Theor Biol; 2016 Nov; 408():274-289. PubMed ID: 27378006
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discovering adaptation-capable biological network structures using control-theoretic approaches.
    Bhattacharya P; Raman K; Tangirala AK
    PLoS Comput Biol; 2022 Jan; 18(1):e1009769. PubMed ID: 35061660
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A hidden integral structure endows absolute concentration robust systems with resilience to dynamical concentration disturbances.
    Cappelletti D; Gupta A; Khammash M
    J R Soc Interface; 2020 Oct; 17(171):20200437. PubMed ID: 33109021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Realizing 'integral control' in living cells: how to overcome leaky integration due to dilution?
    Qian Y; Del Vecchio D
    J R Soc Interface; 2018 Feb; 15(139):. PubMed ID: 29436515
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A hierarchy of biomolecular proportional-integral-derivative feedback controllers for robust perfect adaptation and dynamic performance.
    Filo M; Kumar S; Khammash M
    Nat Commun; 2022 Apr; 13(1):2119. PubMed ID: 35440114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Noise properties of adaptation-conferring biochemical control modules.
    Kell B; Ripsman R; Hilfinger A
    Proc Natl Acad Sci U S A; 2023 Sep; 120(38):e2302016120. PubMed ID: 37695915
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antithetic proportional-integral feedback for reduced variance and improved control performance of stochastic reaction networks.
    Briat C; Gupta A; Khammash M
    J R Soc Interface; 2018 Jun; 15(143):. PubMed ID: 29899158
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-Burden Biological Feedback Controllers for Near-Perfect Adaptation.
    Steel H; Papachristodoulou A
    ACS Synth Biol; 2019 Oct; 8(10):2212-2219. PubMed ID: 31500408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.