BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 36256865)

  • 1. Janus-Faced Fluorescence Imaging Agent for Malondialdehyde and Formaldehyde in Brains.
    Wang X; Su D; Liu C; Li P; Zhang R; Zhang W; Zhang W; Tang B
    Anal Chem; 2022 Nov; 94(43):14965-14973. PubMed ID: 36256865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A two-photon fluorescent probe for basal formaldehyde imaging in zebrafish and visualization of mitochondrial damage induced by FA stress.
    Xin F; Tian Y; Gao C; Guo B; Wu Y; Zhao J; Jing J; Zhang X
    Analyst; 2019 Mar; 144(7):2297-2303. PubMed ID: 30539950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A robust activatable two-photon fluorescent probe for endogenous formaldehyde biomarker visualization diagnosis and evaluation of diabetes mellitus.
    Wang J; Li J; Xu L; Tan D; Guo R; Lin W
    Anal Chim Acta; 2023 Jul; 1266():341371. PubMed ID: 37244658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activity-Based Fluorescent Probes for Sensing and Imaging of Reactive Carbonyl Species (RCSs).
    Jana A; Baruah M; Samanta A
    Chem Asian J; 2022 Apr; 17(8):e202200044. PubMed ID: 35239996
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescent probes for imaging formaldehyde in biological systems.
    Bruemmer KJ; Brewer TF; Chang CJ
    Curr Opin Chem Biol; 2017 Aug; 39():17-23. PubMed ID: 28527906
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of oxidative stress. Interest of GC-MS for malondialdehyde and formaldehyde monitoring.
    Maboudou P; Mathieu D; Bachelet H; Wiart JF; Lhermitte M
    Biomed Chromatogr; 2002 May; 16(3):199-202. PubMed ID: 11920945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A two-photon fluorescent probe for bio-imaging of formaldehyde in living cells and tissues.
    Li JB; Wang QQ; Yuan L; Wu YX; Hu XX; Zhang XB; Tan W
    Analyst; 2016 May; 141(11):3395-402. PubMed ID: 27137921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An intramolecular charge transfer and excited state intramolecular proton transfer based fluorescent probe for highly selective detection and imaging of formaldehyde in living cells.
    Chen W; Yang M; Luo N; Wang F; Yu RQ; Jiang JH
    Analyst; 2019 Nov; 144(23):6922-6927. PubMed ID: 31660553
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activity-Based Sensing Methods for Monitoring the Reactive Carbon Species Carbon Monoxide and Formaldehyde in Living Systems.
    Ohata J; Bruemmer KJ; Chang CJ
    Acc Chem Res; 2019 Oct; 52(10):2841-2848. PubMed ID: 31487154
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A reversible fluorescent probe based on C[double bond, length as m-dash]N isomerization for the selective detection of formaldehyde in living cells and in vivo.
    Song X; Han X; Yu F; Zhang J; Chen L; Lv C
    Analyst; 2018 Jan; 143(2):429-439. PubMed ID: 29260163
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reaction-based fluorescent and chemiluminescent probes for formaldehyde detection and imaging.
    Huang S; Li Z; Liu M; Zhou M; Weng J; He Y; Jiang Y; Zhang H; Sun H
    Chem Commun (Camb); 2022 Feb; 58(10):1442-1453. PubMed ID: 34991152
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activity-Based Genetically Encoded Fluorescent and Luminescent Probes for Detecting Formaldehyde in Living Cells.
    Zhang Y; Du Y; Li M; Zhang D; Xiang Z; Peng T
    Angew Chem Int Ed Engl; 2020 Sep; 59(38):16352-16356. PubMed ID: 32537908
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation of robust fluorescent probes for tracking endogenous formaldehyde in living cells and mouse tissue slices.
    Tang Y; Zhao Y; Lin W
    Nat Protoc; 2020 Oct; 15(10):3499-3526. PubMed ID: 32968251
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design of a New Hydrazine Moiety-Based Near-Infrared Fluorescence Probe for Detection and Imaging of Endogenous Formaldehyde In Vivo.
    Ding N; Li Z; Hao Y; Zhang C
    Anal Chem; 2022 Sep; 94(35):12120-12126. PubMed ID: 36005545
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a General Aza-Cope Reaction Trigger Applied to Fluorescence Imaging of Formaldehyde in Living Cells.
    Bruemmer KJ; Walvoord RR; Brewer TF; Burgos-Barragan G; Wit N; Pontel LB; Patel KJ; Chang CJ
    J Am Chem Soc; 2017 Apr; 139(15):5338-5350. PubMed ID: 28375637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous Fluorescence Imaging Reveals
    Wang X; Bai X; Su D; Zhang Y; Li P; Lu S; Gong Y; Zhang W; Tang B
    Anal Chem; 2020 Mar; 92(5):4101-4107. PubMed ID: 32037810
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rational Design of a Reversible Fluorescent Probe for Sensing Sulfur Dioxide/Formaldehyde in Living Cells, Zebrafish, and Living Mice.
    Ma Y; Tang Y; Zhao Y; Lin W
    Anal Chem; 2019 Aug; 91(16):10723-10730. PubMed ID: 31328500
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a Two-Photon Fluorescent Probe for Imaging of Endogenous Formaldehyde in Living Tissues.
    Tang Y; Kong X; Xu A; Dong B; Lin W
    Angew Chem Int Ed Engl; 2016 Mar; 55(10):3356-9. PubMed ID: 26844535
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A 2-aza-Cope reactivity-based platform for ratiometric fluorescence imaging of formaldehyde in living cells.
    Brewer TF; Burgos-Barragan G; Wit N; Patel KJ; Chang CJ
    Chem Sci; 2017 May; 8(5):4073-4081. PubMed ID: 28580121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A ratiometric ESIPT probe based on 2-aza-Cope rearrangement for rapid and selective detection of formaldehyde in living cells.
    Quan T; Liang Z; Pang H; Zeng G; Chen T
    Analyst; 2022 Jan; 147(2):252-261. PubMed ID: 34931639
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.