These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 36257155)

  • 1. Integration of MFC reduces CH
    Zhu H; Niu T; Shutes B; Wang X; He C; Hou S
    Water Res; 2022 Nov; 226():119226. PubMed ID: 36257155
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CH
    Zhang K; Wu X; Luo H; Li X; Chen W; Chen J; Mo Y; Wang W
    J Environ Manage; 2020 Apr; 260():110071. PubMed ID: 32090814
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of substrate type on enhancing pollutant removal performance and reducing greenhouse gas emission in vertical subsurface flow constructed wetland.
    Xu G; Li Y; Hou W; Wang S; Kong F
    J Environ Manage; 2021 Feb; 280():111674. PubMed ID: 33218830
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changing the order and ratio of substrate filling reduced CH
    Zhang G; Hao Q; Gou Y; Wang X; Chen F; He Y; Liang Z; Jiang C
    Sci Total Environ; 2024 Sep; 941():173740. PubMed ID: 38839002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biochar and hematite amendments suppress emission of CH
    Zhang G; Hao Q; Ma R; Luo S; Chen K; Liang Z; Jiang C
    Sci Total Environ; 2023 May; 874():162451. PubMed ID: 36863587
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of incorporating microbial fuel cells on greenhouse gas emissions from constructed wetlands.
    Wang X; Tian Y; Liu H; Zhao X; Peng S
    Sci Total Environ; 2019 Mar; 656():270-279. PubMed ID: 30504027
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of biochar on greenhouse gas emissions from constructed wetlands under various influent chemical oxygen demand to nitrogen ratios.
    Guo F; Zhang J; Yang X; He Q; Ao L; Chen Y
    Bioresour Technol; 2020 May; 303():122908. PubMed ID: 32028219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of influent salinity on water purification and greenhouse gas emissions in lab-scale constructed wetlands.
    Shao X; Zhao L; Sheng X; Wu M
    Environ Sci Pollut Res Int; 2020 Jun; 27(17):21487-21496. PubMed ID: 32274697
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Greenhouse gas emissions from constructed wetlands are mitigated by biochar substrates and distinctly affected by tidal flow and intermittent aeration modes.
    Ji B; Chen J; Li W; Mei J; Yang Y; Chang J
    Environ Pollut; 2021 Feb; 271():116328. PubMed ID: 33360581
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Greenhouse gas emissions and wastewater treatment performance by three plant species in subsurface flow constructed wetland mesocosms.
    Chen X; Zhu H; Yan B; Shutes B; Xing D; Banuelos G; Cheng R; Wang X
    Chemosphere; 2020 Jan; 239():124795. PubMed ID: 31520977
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Factors Influencing Gaseous Emissions in Constructed Wetlands: A Meta-Analysis and Systematic Review.
    Hu S; Zhu H; Bañuelos G; Shutes B; Wang X; Hou S; Yan B
    Int J Environ Res Public Health; 2023 Feb; 20(5):. PubMed ID: 36900888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plant species diversity reduces N
    Han W; Shi M; Chang J; Ren Y; Xu R; Zhang C; Ge Y
    Environ Sci Pollut Res Int; 2017 Feb; 24(6):5938-5948. PubMed ID: 28070812
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantifying biochar-induced greenhouse gases emission reduction effects in constructed wetlands and its heterogeneity: A multi-level meta-analysis.
    Jiang BN; Lu MB; Zhang ZY; Xie BL; Song HL
    Sci Total Environ; 2023 Jan; 855():158688. PubMed ID: 36108836
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Effect of Ferric-carbon Micro-electrolysis on Greenhouse Gas Emissions from Constructed Wetlands].
    Zhao ZJ; Hao QJ; Tu TT; Hu ML; Zhang YY; Jiang CS
    Huan Jing Ke Xue; 2021 Jul; 42(7):3482-3493. PubMed ID: 34212675
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nutrient removal, methane and nitrous oxide emissions in a hybrid constructed wetland treating anaerobic digestate.
    Zhou S; Wang C; Liu C; Sun H; Zhang J; Zhang X; Xin L
    Sci Total Environ; 2020 Sep; 733():138338. PubMed ID: 32446044
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous reduction of antibiotics leakage and methane emission from constructed wetland by integrating microbial fuel cell.
    Xu H; Song HL; Singh RP; Yang YL; Xu JY; Yang XL
    Bioresour Technol; 2021 Jan; 320(Pt A):124285. PubMed ID: 33130542
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synergistic reduction of pollution and carbon mitigation in constructed wetlands-microbial fuel cell using sludge-derived biochar.
    Li C; Yuan Q; Hao L; Xu M; Cao J; Liu W
    Sci Total Environ; 2024 Aug; 939():172979. PubMed ID: 38705303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Effects of Hematite and Biochar Addition on Wastewater Treatment Efficiency, Greenhouse Gas Emission, and Microbial Community in Subsurface Flow Constructed Wetland].
    Chen XT; Hao QJ; Xiong YF; Hu J; Jiang CS
    Huan Jing Ke Xue; 2022 Mar; 43(3):1492-1499. PubMed ID: 35258213
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects and mechanisms of constructed wetlands with different substrates on N
    Huo J; Hu X; Cheng S; Xie H; Hu Z; Wu H; Liang S
    Environ Sci Pollut Res Int; 2022 Mar; 29(13):19045-19053. PubMed ID: 34713400
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Treatment of typical antibiotics in constructed wetlands integrated with microbial fuel cells: Roles of plant and circuit operation mode.
    Wen H; Zhu H; Yan B; Xu Y; Shutes B
    Chemosphere; 2020 Jul; 250():126252. PubMed ID: 32097812
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.