These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 36257521)
1. Integrative biohydrogen- and biomethane-producing bioprocesses for comprehensive production of biohythane. Kim HH; Saha S; Hwang JH; Hosen MA; Ahn YT; Park YK; Khan MA; Jeon BH Bioresour Technol; 2022 Dec; 365():128145. PubMed ID: 36257521 [TBL] [Abstract][Full Text] [Related]
2. Bioprocess engineering for biohythane production from low-grade waste biomass: technical challenges towards scale up. Liu Z; Si B; Li J; He J; Zhang C; Lu Y; Zhang Y; Xing XH Curr Opin Biotechnol; 2018 Apr; 50():25-31. PubMed ID: 28892667 [TBL] [Abstract][Full Text] [Related]
3. Biohythane production via anaerobic digestion process: fundamentals, scale-up challenges, and techno-economic and environmental aspects. Alavi-Borazjani SA; da Cruz Tarelho LA; Capela MI Environ Sci Pollut Res Int; 2024 Aug; 31(38):49935-49984. PubMed ID: 39090294 [TBL] [Abstract][Full Text] [Related]
4. Recent developments in biohythane production from household food wastes: A review. Bolzonella D; Battista F; Cavinato C; Gottardo M; Micolucci F; Lyberatos G; Pavan P Bioresour Technol; 2018 Jun; 257():311-319. PubMed ID: 29501273 [TBL] [Abstract][Full Text] [Related]
5. Effect of Biohythane Production from Distillery Spent Wash with Addition of Landfill Leachate and Sewage Wastewater. Saranga VK; Kumar PK; Verma K; Bhagawan D; Himabindu V; Narasu ML Appl Biochem Biotechnol; 2020 Jan; 190(1):30-43. PubMed ID: 31297754 [TBL] [Abstract][Full Text] [Related]
6. Biohythane: a Potential Biofuel of the Future. Ghosh S; Kar D Appl Biochem Biotechnol; 2024 May; 196(5):2957-2975. PubMed ID: 36576653 [TBL] [Abstract][Full Text] [Related]
7. Biohythane production from two-stage anaerobic digestion of food waste: A review. An X; Xu Y; Dai X J Environ Sci (China); 2024 May; 139():334-349. PubMed ID: 38105059 [TBL] [Abstract][Full Text] [Related]
8. Effects of hydraulic retention time on biohythane production via single-stage anaerobic fermentation in a two-compartment bioreactor. Vo TP; Lay CH; Lin CY Bioresour Technol; 2019 Nov; 292():121869. PubMed ID: 31400653 [TBL] [Abstract][Full Text] [Related]
9. States and challenges for high-value biohythane production from waste biomass by dark fermentation technology. Liu Z; Zhang C; Lu Y; Wu X; Wang L; Wang L; Han B; Xing XH Bioresour Technol; 2013 May; 135():292-303. PubMed ID: 23186673 [TBL] [Abstract][Full Text] [Related]
10. Biohythane production via single-stage fermentation using gel-entrapped anaerobic microorganisms: Effect of hydraulic retention time. Ta DT; Lin CY; Ta TM; Chu CY Bioresour Technol; 2020 Dec; 317():123986. PubMed ID: 32799083 [TBL] [Abstract][Full Text] [Related]
11. Two-stage biohydrogen and methane production from sugarcane-based sugar and ethanol industrial wastes: A comprehensive review. Sukphun P; Wongarmat W; Imai T; Sittijunda S; Chaiprapat S; Reungsang A Bioresour Technol; 2023 Oct; 386():129519. PubMed ID: 37468010 [TBL] [Abstract][Full Text] [Related]
12. Biohythane production via single-stage anaerobic fermentation using entrapped hydrogenic and methanogenic bacteria. Ta DT; Lin CY; Ta TMN; Chu CY Bioresour Technol; 2020 Mar; 300():122702. PubMed ID: 31918294 [TBL] [Abstract][Full Text] [Related]
13. Biohydrogen production from dairy manures with acidification pretreatment by anaerobic fermentation. Xing Y; Li Z; Fan Y; Hou H Environ Sci Pollut Res Int; 2010 Feb; 17(2):392-9. PubMed ID: 19499259 [TBL] [Abstract][Full Text] [Related]
14. Continuous production of biohythane from hydrothermal liquefied cornstalk biomass via two-stage high-rate anaerobic reactors. Si BC; Li JM; Zhu ZB; Zhang YH; Lu JW; Shen RX; Zhang C; Xing XH; Liu Z Biotechnol Biofuels; 2016; 9():254. PubMed ID: 27895708 [TBL] [Abstract][Full Text] [Related]
15. Energy conversion of biomass crops and agroindustrial residues by combined biohydrogen/biomethane system and anaerobic digestion. Corneli E; Dragoni F; Adessi A; De Philippis R; Bonari E; Ragaglini G Bioresour Technol; 2016 Jul; 211():509-18. PubMed ID: 27038259 [TBL] [Abstract][Full Text] [Related]
16. A high-value biohythane production: Feedstocks, reactor configurations, pathways, challenges, technoeconomics and applications. Mozhiarasi V; Natarajan TS; Dhamodharan K Environ Res; 2023 Feb; 219():115094. PubMed ID: 36535394 [TBL] [Abstract][Full Text] [Related]
17. Biohythane Production in Hydrogen-Oriented Dark Fermentation of Aerobic Granular Sludge (AGS) Pretreated with Solidified Carbon Dioxide (SCO Kazimierowicz J; Dębowski M; Zieliński M Int J Mol Sci; 2023 Feb; 24(5):. PubMed ID: 36901872 [TBL] [Abstract][Full Text] [Related]
18. An innovative multistage anaerobic hythane reactor (MAHR): Metabolic flux, thermodynamics and microbial functions. Si B; Yang H; Huang S; Watson J; Zhang Y; Liu Z Water Res; 2020 Feb; 169():115216. PubMed ID: 31675610 [TBL] [Abstract][Full Text] [Related]
19. Production of biohythane from food waste via an integrated system of continuously stirred tank and anaerobic fixed bed reactors. Yeshanew MM; Frunzo L; Pirozzi F; Lens PNL; Esposito G Bioresour Technol; 2016 Nov; 220():312-322. PubMed ID: 27591517 [TBL] [Abstract][Full Text] [Related]
20. Biohythane production from food processing wastes - Challenges and perspectives. Meena RAA; Rajesh Banu J; Yukesh Kannah R; Yogalakshmi KN; Kumar G Bioresour Technol; 2020 Feb; 298():122449. PubMed ID: 31784253 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]