BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 36257743)

  • 1. Near-infrared fluorescent probe with a large Stokes shift for bioimaging of β-galactosidase in living cells and zebrafish develop at different period.
    Chen S; Niu K; Wang L; Wu Y; Hou S; Ma X
    Anal Chim Acta; 2022 Nov; 1232():340459. PubMed ID: 36257743
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rational design of near-infrared ratiometric fluorescent probes for real-time tracking of β-galactosidase in vivo.
    Chen S; Liu M; Zi Y; He J; Wang L; Wu Y; Hou S; Wu W
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Jan; 285():121879. PubMed ID: 36122464
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visualization of endogenous β-galactosidase activity in living cells and zebrafish with a turn-on near-infrared fluorescent probe.
    Pang X; Li Y; Zhou Z; Lu Q; Xie R; Wu C; Zhang Y; Li H
    Talanta; 2020 Sep; 217():121098. PubMed ID: 32498839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visualize intracellular β-galactosidase using an asymmetric near-infrared fluorescent probe with a large Stokes shift.
    Chen S; Ma X; Wang H; Wang L; Wu Y; Wang Y; Li Y; Fan W; Niu C; Hou S
    Anal Chim Acta; 2023 Sep; 1272():341482. PubMed ID: 37355329
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A near-infrared fluorescent probe for the ratiometric detection and living cell imaging of β-galactosidase.
    Zhang X; Chen X; Zhang Y; Liu K; Shen H; Zheng E; Huang X; Hou S; Ma X
    Anal Bioanal Chem; 2019 Dec; 411(30):7957-7966. PubMed ID: 31732786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A near-infrared fluorescent probe with a substantial Stokes shift designed for the detection and imaging of β-galactosidase within living cells and animals.
    Lo YP; Nivetha N; Velmathi S; Wu SP
    Methods; 2024 Feb; 222():10-18. PubMed ID: 38154527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A sensitive fluorescent probe for β-galactosidase activity detection and application in ovarian tumor imaging.
    Fan F; Zhang L; Zhou X; Mu F; Shi G
    J Mater Chem B; 2021 Jan; 9(1):170-175. PubMed ID: 33230516
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new near-infrared excitation/emission fluorescent probe for the detection of β-galactosidase in living cells and in vivo.
    Li Y; Liu F; Zhu D; Zhu T; Zhang Y; Li Y; Luo J; Kong L
    Talanta; 2022 Jan; 237():122952. PubMed ID: 34736678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-Time Tracking and In Vivo Visualization of β-Galactosidase Activity in Colorectal Tumor with a Ratiometric Near-Infrared Fluorescent Probe.
    Gu K; Xu Y; Li H; Guo Z; Zhu S; Zhu S; Shi P; James TD; Tian H; Zhu WH
    J Am Chem Soc; 2016 Apr; 138(16):5334-40. PubMed ID: 27054782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A near-infrared fluorescent probe for monitoring and imaging of β-galactosidase in living cells.
    Wu C; Ni Z; Li P; Li Y; Pang X; Xie R; Zhou Z; Li H; Zhang Y
    Talanta; 2020 Nov; 219():121307. PubMed ID: 32887048
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A fluorescent probe for specific detection of β-galactosidase in living cells and tissues based on ESIPT mechanism.
    Li Z; Ren M; Zhao Y; Song W; Cheng J; Lin W
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Apr; 251():119446. PubMed ID: 33465572
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NIR-excited imaging and in vivo visualization of β-galactosidase activity using a pyranonitrile-modified upconversion nanoprobe.
    Jiang D; Tan Q; Shen Y; Ye M; Li J; Zhou Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 May; 292():122411. PubMed ID: 36731306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A turn on fluorescent assay for real time determination of β-galactosidase and its application in living cell imaging.
    Liu D; Zhang Z; Chen A; Zhang P
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Jan; 265():120345. PubMed ID: 34492512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel fluorescent probe for rapid and ratiometric detection of β-galactosidase and live cell imaging.
    Chen X; Zhang X; Ma X; Zhang Y; Gao G; Liu J; Hou S
    Talanta; 2019 Jan; 192():308-313. PubMed ID: 30348394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel NIR fluorescent probe for enhanced β-galactosidase detection and tumor imaging in ovarian cancer models.
    Luo W; Diao Q; Lv L; Li T; Ma P; Song D
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Sep; 317():124411. PubMed ID: 38728851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-Dimensional Design Strategy to Construct Smart Fluorescent Probes for the Precise Tracking of Senescence.
    Gao Y; Hu Y; Liu Q; Li X; Li X; Kim CY; James TD; Li J; Chen X; Guo Y
    Angew Chem Int Ed Engl; 2021 May; 60(19):10756-10765. PubMed ID: 33624914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel near-infrared fluorescent probe for sensitive detection of β-galactosidase in living cells.
    Zhang J; Li C; Dutta C; Fang M; Zhang S; Tiwari A; Werner T; Luo FT; Liu H
    Anal Chim Acta; 2017 May; 968():97-104. PubMed ID: 28395779
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A D-π-A-based near-infrared fluorescent probe with large Stokes shift for the detection of cysteine in vivo.
    Fang WL; Liang ZY; Guo XF; Wang H
    Talanta; 2024 Feb; 268(Pt 1):125354. PubMed ID: 37918245
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrasensitive two-photon probes for rapid detection of β-galactosidase during fruit softening and cellular senescence.
    Shan YM; Yu KK; Yu FY; Liu YH; Yu XQ; Li K
    Food Chem; 2024 Jan; 431():137117. PubMed ID: 37598655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Specific Near-Infrared Probe for Ultrafast Imaging of Lysosomal β-Galactosidase in Ovarian Cancer Cells.
    Li X; Pan Y; Chen H; Duan Y; Zhou S; Wu W; Wang S; Liu B
    Anal Chem; 2020 Apr; 92(8):5772-5779. PubMed ID: 32212603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.