These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 36257755)
1. Segmented MS/MS acquisition of a1 ion-based strategy for in-depth proteome quantitation. Wang Z; Liu C; Wang S; Hou X; Gong P; Li X; Liang Z; Liu J; Zhang L; Zhang Y Anal Chim Acta; 2022 Nov; 1232():340491. PubMed ID: 36257755 [TBL] [Abstract][Full Text] [Related]
2. A1 Ions: Peptide-Specific and Intensity-Enhanced Fragment Ions for Accurate and Multiplexed Proteome Quantitation. Liu J; Zhou Y; Hou X; Liu C; Zhao B; Shan Y; Sui Z; Liang Z; Zhang L; Zhang Y Anal Chem; 2022 May; 94(21):7637-7646. PubMed ID: 35590477 [TBL] [Abstract][Full Text] [Related]
3. A Novel Differential Ion Mobility Device Expands the Depth of Proteome Coverage and the Sensitivity of Multiplex Proteomic Measurements. Pfammatter S; Bonneil E; McManus FP; Prasad S; Bailey DJ; Belford M; Dunyach JJ; Thibault P Mol Cell Proteomics; 2018 Oct; 17(10):2051-2067. PubMed ID: 30007914 [TBL] [Abstract][Full Text] [Related]
4. Coupling High-Field Asymmetric Ion Mobility Spectrometry with Capillary Electrophoresis-Electrospray Ionization-Tandem Mass Spectrometry Improves Protein Identifications in Bottom-Up Proteomic Analysis of Low Nanogram Samples. Johnson KR; Greguš M; Ivanov AR J Proteome Res; 2022 Oct; 21(10):2453-2461. PubMed ID: 36112031 [TBL] [Abstract][Full Text] [Related]
5. Partially isobaric peptide termini labeling assisted proteome quantitation based on MS and MS/MS signals. Zhang S; Wu Q; Shan Y; Zhou Y; Zhang L; Zhang Y J Proteomics; 2015 Jan; 114():152-60. PubMed ID: 25434490 [TBL] [Abstract][Full Text] [Related]
6. High-Field Asymmetric Waveform Ion Mobility Spectrometry: Practical Alternative for Cardiac Proteome Sample Processing. Ai L; Binek A; Kreimer S; Ayres M; Stotland A; Van Eyk JE J Proteome Res; 2023 Jun; 22(6):2124-2130. PubMed ID: 37040897 [TBL] [Abstract][Full Text] [Related]
7. Integration of Segmented Ion Fractionation and Differential Ion Mobility on a Q-Exactive Hybrid Quadrupole Orbitrap Mass Spectrometer. Pfammatter S; Wu Z; Bonneil E; Bailey DJ; Prasad S; Belford M; Rochon J; Picard P; Lacoursière J; Dunyach JJ; Thibault P Anal Chem; 2021 Jul; 93(28):9817-9825. PubMed ID: 34213903 [TBL] [Abstract][Full Text] [Related]
9. Accurate Quantitative Proteomic Analyses Using Metabolic Labeling and High Field Asymmetric Waveform Ion Mobility Spectrometry (FAIMS). Pfammatter S; Bonneil E; McManus FP; Thibault P J Proteome Res; 2019 May; 18(5):2129-2138. PubMed ID: 30919622 [TBL] [Abstract][Full Text] [Related]
10. Online 2D High-pH and Low-pH Reversed-Phase Nano-LC-MS/MS System for Deep Proteome Analysis. Liu YC; Chen CJ Anal Chem; 2023 Apr; 95(14):5850-5857. PubMed ID: 36995735 [TBL] [Abstract][Full Text] [Related]
11. Nanospray FAIMS fractionation provides significant increases in proteome coverage of unfractionated complex protein digests. Swearingen KE; Hoopmann MR; Johnson RS; Saleem RA; Aitchison JD; Moritz RL Mol Cell Proteomics; 2012 Apr; 11(4):M111.014985. PubMed ID: 22186714 [TBL] [Abstract][Full Text] [Related]
12. Investigating Acquisition Performance on the Orbitrap Fusion When Using Tandem MS/MS/MS Scanning with Isobaric Tags. Hughes CS; Spicer V; Krokhin OV; Morin GB J Proteome Res; 2017 May; 16(5):1839-1846. PubMed ID: 28418257 [TBL] [Abstract][Full Text] [Related]
13. Enhancement of mass spectrometry performance for proteomic analyses using high-field asymmetric waveform ion mobility spectrometry (FAIMS). Bonneil E; Pfammatter S; Thibault P J Mass Spectrom; 2015 Nov; 50(11):1181-95. PubMed ID: 26505763 [TBL] [Abstract][Full Text] [Related]
14. Qualitative and quantitative characterization of plasma proteins when incorporating traveling wave ion mobility into a liquid chromatography-mass spectrometry workflow for biomarker discovery: use of product ion quantitation as an alternative data analysis tool for label free quantitation. Daly CE; Ng LL; Hakimi A; Willingale R; Jones DJ Anal Chem; 2014 Feb; 86(4):1972-9. PubMed ID: 24397486 [TBL] [Abstract][Full Text] [Related]
15. Deep Learning Powers Protein Identification from Precursor MS Information. Dai Y; Yang Y; Wu E; Shen C; Qiao L J Proteome Res; 2024 Sep; 23(9):3837-3846. PubMed ID: 39167422 [TBL] [Abstract][Full Text] [Related]
16. A fully automated FAIMS-DIA mass spectrometry-based proteomic pipeline. Reilly L; Lara E; Ramos D; Li Z; Pantazis CB; Stadler J; Santiana M; Roberts J; Faghri F; Hao Y; Nalls MA; Narayan P; Liu Y; Singleton AB; Cookson MR; Ward ME; Qi YA Cell Rep Methods; 2023 Oct; 3(10):100593. PubMed ID: 37729920 [TBL] [Abstract][Full Text] [Related]
17. Global Comparative Label-Free Yeast Proteome Analysis by LC-MS/MS After High-pH Reversed-Phase Peptide Fractionation Using Solid-Phase Extraction Cartridges. Zaman K; Pandey P; Shulaev V; Prokai L Methods Mol Biol; 2022; 2396():71-84. PubMed ID: 34786677 [TBL] [Abstract][Full Text] [Related]
19. Single-Shot 10K Proteome Approach: Over 10,000 Protein Identifications by Data-Independent Acquisition-Based Single-Shot Proteomics with Ion Mobility Spectrometry. Kawashima Y; Nagai H; Konno R; Ishikawa M; Nakajima D; Sato H; Nakamura R; Furuyashiki T; Ohara O J Proteome Res; 2022 Jun; 21(6):1418-1427. PubMed ID: 35522919 [TBL] [Abstract][Full Text] [Related]
20. Large-Scale Qualitative and Quantitative Top-Down Proteomics Using Capillary Zone Electrophoresis-Electrospray Ionization-Tandem Mass Spectrometry with Nanograms of Proteome Samples. Lubeckyj RA; Basharat AR; Shen X; Liu X; Sun L J Am Soc Mass Spectrom; 2019 Aug; 30(8):1435-1445. PubMed ID: 30972727 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]