These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 36257755)
21. Mass Spectrometry-Based Proteomics for Biomarker Discovery. Cao Z; Yu LR Methods Mol Biol; 2022; 2486():3-17. PubMed ID: 35437715 [TBL] [Abstract][Full Text] [Related]
22. Enhanced sensitivity in proteomics experiments using FAIMS coupled with a hybrid linear ion trap/Orbitrap mass spectrometer. Saba J; Bonneil E; Pomiès C; Eng K; Thibault P J Proteome Res; 2009 Jul; 8(7):3355-66. PubMed ID: 19469569 [TBL] [Abstract][Full Text] [Related]
25. Characterization and Optimization of Multiplexed Quantitative Analyses Using High-Field Asymmetric-Waveform Ion Mobility Mass Spectrometry. Schweppe DK; Prasad S; Belford MW; Navarrete-Perea J; Bailey DJ; Huguet R; Jedrychowski MP; Rad R; McAlister G; Abbatiello SE; Woulters ER; Zabrouskov V; Dunyach JJ; Paulo JA; Gygi SP Anal Chem; 2019 Mar; 91(6):4010-4016. PubMed ID: 30672687 [TBL] [Abstract][Full Text] [Related]
26. Extending the Separation Space with Trapped Ion Mobility Spectrometry Improves the Accuracy of Isobaric Tag-Based Quantitation in Proteomic LC/MS/MS. Ogata K; Ishihama Y Anal Chem; 2020 Jun; 92(12):8037-8040. PubMed ID: 32441512 [TBL] [Abstract][Full Text] [Related]
27. Hyphenation of capillary zone electrophoresis with mass spectrometry for proteomic analysis: Optimization and comparison of two coupling interfaces. Gou MJ; Nys G; Cobraiville G; Demelenne A; Servais AC; Fillet M J Chromatogr A; 2020 May; 1618():460873. PubMed ID: 31987525 [TBL] [Abstract][Full Text] [Related]
28. SPPUSM: An MS/MS spectra merging strategy for improved low-input and single-cell proteome identification. Chen Y; Du Z; Zhao H; Fang W; Liu T; Zhang Y; Zhang W; Qin W Anal Chim Acta; 2023 Oct; 1279():341793. PubMed ID: 37827637 [TBL] [Abstract][Full Text] [Related]
29. Comparison of MS Fu Q; Liu Z; Bhawal R; Anderson ET; Sherwood RW; Yang Y; Thannhauser T; Schroyen M; Tang X; Zhang H; Zhang S Anal Bioanal Chem; 2021 Jan; 413(2):419-429. PubMed ID: 33099676 [TBL] [Abstract][Full Text] [Related]
30. Improved breast milk proteome coverage by DIA based LC-MS/MS method. Viitaharju J; Polari L; Kauko O; Merilahti J; Rokka A; Toivola DM; Laitinen K Proteomics; 2024 Jul; 24(14):e2300340. PubMed ID: 38873899 [TBL] [Abstract][Full Text] [Related]
31. High Field Asymmetric Waveform Ion Mobility Spectrometry in Nontargeted Bottom-up Proteomics of Dried Blood Spots. Rosting C; Yu J; Cooper HJ J Proteome Res; 2018 Jun; 17(6):1997-2004. PubMed ID: 29707944 [TBL] [Abstract][Full Text] [Related]
32. Intact Protein Quantitation Using Pseudoisobaric Dimethyl Labeling. Fang H; Xiao K; Li Y; Yu F; Liu Y; Xue B; Tian Z Anal Chem; 2016 Jul; 88(14):7198-205. PubMed ID: 27359340 [TBL] [Abstract][Full Text] [Related]
33. A comprehensive spectral assay library to quantify the Escherichia coli proteome by DIA/SWATH-MS. Midha MK; Kusebauch U; Shteynberg D; Kapil C; Bader SL; Reddy PJ; Campbell DS; Baliga NS; Moritz RL Sci Data; 2020 Nov; 7(1):389. PubMed ID: 33184295 [TBL] [Abstract][Full Text] [Related]
34. Improvement of phosphoproteome analyses using FAIMS and decision tree fragmentation. application to the insulin signaling pathway in Drosophila melanogaster S2 cells. Bridon G; Bonneil E; Muratore-Schroeder T; Caron-Lizotte O; Thibault P J Proteome Res; 2012 Feb; 11(2):927-40. PubMed ID: 22059388 [TBL] [Abstract][Full Text] [Related]
35. Three-dimensional feature matching improves coverage for single-cell proteomics based on ion mobility filtering. Woo J; Clair GC; Williams SM; Feng S; Tsai CF; Moore RJ; Chrisler WB; Smith RD; Kelly RT; Paša-Tolić L; Ansong C; Zhu Y Cell Syst; 2022 May; 13(5):426-434.e4. PubMed ID: 35298923 [TBL] [Abstract][Full Text] [Related]
36. Improving qualitative and quantitative performance for MS(E)-based label-free proteomics. Bond NJ; Shliaha PV; Lilley KS; Gatto L J Proteome Res; 2013 Jun; 12(6):2340-53. PubMed ID: 23510225 [TBL] [Abstract][Full Text] [Related]
37. Combination of gas-phase fractionation and MS³ acquisition modes for relative protein quantification with isobaric tagging. Dayon L; Sonderegger B; Kussmann M J Proteome Res; 2012 Oct; 11(10):5081-9. PubMed ID: 22946824 [TBL] [Abstract][Full Text] [Related]
38. Rapid Targeted Quantitation of Protein Overexpression with Direct Infusion Shotgun Proteome Analysis (DISPA-PRM). Trujillo EA; Hebert AS; Rivera Vazquez JC; Brademan DR; Tatli M; Amador-Noguez D; Meyer JG; Coon JJ Anal Chem; 2022 Feb; 94(4):1965-1973. PubMed ID: 35044165 [TBL] [Abstract][Full Text] [Related]
39. Mixed-mode ion exchange-based integrated proteomics technology for fast and deep plasma proteome profiling. Xue L; Lin L; Zhou W; Chen W; Tang J; Sun X; Huang P; Tian R J Chromatogr A; 2018 Aug; 1564():76-84. PubMed ID: 29935814 [TBL] [Abstract][Full Text] [Related]