These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 36257955)

  • 41. Automated assignment of NMR chemical shifts using peak-particle dynamics simulation with the DYNASSIGN algorithm.
    Schmucki R; Yokoyama S; Güntert P
    J Biomol NMR; 2009 Feb; 43(2):97-109. PubMed ID: 19034675
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Reliable resonance assignments of selected residues of proteins with known structure based on empirical NMR chemical shift prediction.
    Li DW; Meng D; Brüschweiler R
    J Magn Reson; 2015 May; 254():93-7. PubMed ID: 25863893
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The fumarate sensor DcuS: progress in rapid protein fold elucidation by combining protein structure prediction methods with NMR spectroscopy.
    Meiler J; Baker D
    J Magn Reson; 2005 Apr; 173(2):310-6. PubMed ID: 15780923
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Robust, integrated computational control of NMR experiments to achieve optimal assignment by ADAPT-NMR.
    Bahrami A; Tonelli M; Sahu SC; Singarapu KK; Eghbalnia HR; Markley JL
    PLoS One; 2012; 7(3):e33173. PubMed ID: 22427982
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Refinement of NMR-determined protein structures with database derived mean-force potentials.
    Wu D; Jernigan R; Wu Z
    Proteins; 2007 Jul; 68(1):232-42. PubMed ID: 17387736
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Fast and accurate resonance assignment of small-to-large proteins by combining automated and manual approaches.
    Niklasson M; Ahlner A; Andresen C; Marsh JA; Lundström P
    PLoS Comput Biol; 2015 Jan; 11(1):e1004022. PubMed ID: 25569628
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Three-dimensional correlated accordion NMR spectroscopy of proteins.
    Ding K; Ithychanda S; Qin J
    J Magn Reson; 2006 Jun; 180(2):203-9. PubMed ID: 16530439
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A polynomial-time nuclear vector replacement algorithm for automated NMR resonance assignments.
    Langmead CJ; Yan A; Lilien R; Wang L; Donald BR
    J Comput Biol; 2004; 11(2-3):277-98. PubMed ID: 15285893
    [TBL] [Abstract][Full Text] [Related]  

  • 49. NMR data-driven structure determination using NMR-I-TASSER in the CASD-NMR experiment.
    Jang R; Wang Y; Xue Z; Zhang Y
    J Biomol NMR; 2015 Aug; 62(4):511-25. PubMed ID: 25737244
    [TBL] [Abstract][Full Text] [Related]  

  • 50. CSSI-PRO: a method for secondary structure type editing, assignment and estimation in proteins using linear combination of backbone chemical shifts.
    Swain M; Atreya HS
    J Biomol NMR; 2009 Aug; 44(4):185-94. PubMed ID: 19529884
    [TBL] [Abstract][Full Text] [Related]  

  • 51. PACES: Protein sequential assignment by computer-assisted exhaustive search.
    Coggins BE; Zhou P
    J Biomol NMR; 2003 Jun; 26(2):93-111. PubMed ID: 12766406
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Automated NMR resonance assignments and structure determination using a minimal set of 4D spectra.
    Evangelidis T; Nerli S; Nováček J; Brereton AE; Karplus PA; Dotas RR; Venditti V; Sgourakis NG; Tripsianes K
    Nat Commun; 2018 Jan; 9(1):384. PubMed ID: 29374165
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Fully automated sequence-specific resonance assignments of hetero- nuclear protein spectra.
    Malmodin D; Papavoine CH; Billeter M
    J Biomol NMR; 2003 Sep; 27(1):69-79. PubMed ID: 12878842
    [TBL] [Abstract][Full Text] [Related]  

  • 54. NMR protein structure determination in living E. coli cells using nonlinear sampling.
    Ikeya T; Sasaki A; Sakakibara D; Shigemitsu Y; Hamatsu J; Hanashima T; Mishima M; Yoshimasu M; Hayashi N; Mikawa T; Nietlispach D; Wälchli M; Smith BO; Shirakawa M; Güntert P; Ito Y
    Nat Protoc; 2010 Jun; 5(6):1051-60. PubMed ID: 20539281
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Integrative NMR for biomolecular research.
    Lee W; Cornilescu G; Dashti H; Eghbalnia HR; Tonelli M; Westler WM; Butcher SE; Henzler-Wildman KA; Markley JL
    J Biomol NMR; 2016 Apr; 64(4):307-32. PubMed ID: 27023095
    [TBL] [Abstract][Full Text] [Related]  

  • 56. NMR in the acceleration of drug discovery.
    Sem DS; Pellecchia M
    Curr Opin Drug Discov Devel; 2001 Jul; 4(4):479-92. PubMed ID: 11727313
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Automated projection spectroscopy and its applications.
    Hiller S; Wider G
    Top Curr Chem; 2012; 316():21-47. PubMed ID: 21710379
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Robust and highly accurate automatic NOESY assignment and structure determination with Rosetta.
    Zhang Z; Porter J; Tripsianes K; Lange OF
    J Biomol NMR; 2014 Jul; 59(3):135-45. PubMed ID: 24845473
    [TBL] [Abstract][Full Text] [Related]  

  • 59. PICKY: a novel SVD-based NMR spectra peak picking method.
    Alipanahi B; Gao X; Karakoc E; Donaldson L; Li M
    Bioinformatics; 2009 Jun; 25(12):i268-75. PubMed ID: 19477998
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Nuclear overhauser spectroscopy of chiral CHD methylene groups.
    Augustyniak R; Stanek J; Colaux H; Bodenhausen G; Koźmiński W; Herrmann T; Ferrage F
    J Biomol NMR; 2016 Jan; 64(1):27-37. PubMed ID: 26614488
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.