These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 36257983)

  • 1. Direct experimental observation of blue-light-induced conformational change and intermolecular interactions of cryptochrome.
    Li P; Cheng H; Kumar V; Lupala CS; Li X; Shi Y; Ma C; Joo K; Lee J; Liu H; Tan YW
    Commun Biol; 2022 Oct; 5(1):1103. PubMed ID: 36257983
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of structural plasticity in signal transduction by the cryptochrome blue-light photoreceptor.
    Partch CL; Clarkson MW; Ozgür S; Lee AL; Sancar A
    Biochemistry; 2005 Mar; 44(10):3795-805. PubMed ID: 15751956
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Potorous CPD photolyase rescues a cryptochrome-deficient mammalian circadian clock.
    Chaves I; Nijman RM; Biernat MA; Bajek MI; Brand K; da Silva AC; Saito S; Yagita K; Eker AP; van der Horst GT
    PLoS One; 2011; 6(8):e23447. PubMed ID: 21858120
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light-Induced Conformational Changes in the Plant Cryptochrome Photolyase Homology Region Resolved by Selective Isotope Labeling and Infrared Spectroscopy.
    Sommer C; Dietz MS; Patschkowski T; Mathes T; Kottke T
    Photochem Photobiol; 2017 May; 93(3):881-887. PubMed ID: 28500697
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The cryptochrome-photolyase protein family in diatoms.
    König S; Juhas M; Jäger S; Kottke T; Büchel C
    J Plant Physiol; 2017 Oct; 217():15-19. PubMed ID: 28720252
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Photolyase/Cryptochrome Family of Proteins as DNA Repair Enzymes and Transcriptional Repressors.
    Kavakli IH; Baris I; Tardu M; Gül Ş; Öner H; Çal S; Bulut S; Yarparvar D; Berkel Ç; Ustaoğlu P; Aydın C
    Photochem Photobiol; 2017 Jan; 93(1):93-103. PubMed ID: 28067410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photolyase/cryptochrome blue-light photoreceptors use photon energy to repair DNA and reset the circadian clock.
    Thompson CL; Sancar A
    Oncogene; 2002 Dec; 21(58):9043-56. PubMed ID: 12483519
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution of Proteins of the DNA Photolyase/Cryptochrome Family.
    Vechtomova YL; Telegina TA; Kritsky MS
    Biochemistry (Mosc); 2020 Jan; 85(Suppl 1):S131-S153. PubMed ID: 32087057
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Blue-light-induced changes in Arabidopsis cryptochrome 1 probed by FTIR difference spectroscopy.
    Kottke T; Batschauer A; Ahmad M; Heberle J
    Biochemistry; 2006 Feb; 45(8):2472-9. PubMed ID: 16489739
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure function analysis of mammalian cryptochromes.
    Tamanini F; Chaves I; Bajek MI; van der Horst GT
    Cold Spring Harb Symp Quant Biol; 2007; 72():133-9. PubMed ID: 18419270
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chlamydomonas reinhardtii strain CC-124 is highly sensitive to blue light in addition to green and red light in resetting its circadian clock, with the blue-light photoreceptor plant cryptochrome likely acting as negative modulator.
    Forbes-Stovall J; Howton J; Young M; Davis G; Chandler T; Kessler B; Rinehart CA; Jacobshagen S
    Plant Physiol Biochem; 2014 Feb; 75():14-23. PubMed ID: 24361506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photolyase/cryptochrome family blue-light photoreceptors use light energy to repair DNA or set the circadian clock.
    Sancar A; Thompson C; Thresher RJ; Araujo F; Mo J; Ozgur S; Vagas E; Dawut L; Selby CP
    Cold Spring Harb Symp Quant Biol; 2000; 65():157-71. PubMed ID: 12760030
    [No Abstract]   [Full Text] [Related]  

  • 13. Characterization of two members of the cryptochrome/photolyase family from Ostreococcus tauri provides insights into the origin and evolution of cryptochromes.
    Heijde M; Zabulon G; Corellou F; Ishikawa T; Brazard J; Usman A; Sanchez F; Plaza P; Martin M; Falciatore A; Todo T; Bouget FY; Bowler C
    Plant Cell Environ; 2010 Oct; 33(10):1614-26. PubMed ID: 20444223
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure of the photolyase-like domain of cryptochrome 1 from Arabidopsis thaliana.
    Brautigam CA; Smith BS; Ma Z; Palnitkar M; Tomchick DR; Machius M; Deisenhofer J
    Proc Natl Acad Sci U S A; 2004 Aug; 101(33):12142-7. PubMed ID: 15299148
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Light-induced conformational change and product release in DNA repair by (6-4) photolyase.
    Kondoh M; Hitomi K; Yamamoto J; Todo T; Iwai S; Getzoff ED; Terazima M
    J Am Chem Soc; 2011 Feb; 133(7):2183-91. PubMed ID: 21271694
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microsecond Deprotonation of Aspartic Acid and Response of the α/β Subdomain Precede C-Terminal Signaling in the Blue Light Sensor Plant Cryptochrome.
    Thöing C; Oldemeyer S; Kottke T
    J Am Chem Soc; 2015 May; 137(18):5990-9. PubMed ID: 25909499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cryptochrome structure and signal transduction.
    Lin C; Shalitin D
    Annu Rev Plant Biol; 2003; 54():469-96. PubMed ID: 14503000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cryptochrome signaling in plants.
    Li QH; Yang HQ
    Photochem Photobiol; 2007; 83(1):94-101. PubMed ID: 17002522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformational and Intermolecular Interaction Dynamics of Photolyase/Cryptochrome Proteins Monitored by the Time-Resolved Diffusion Technique.
    Kondoh M; Terazima M
    Photochem Photobiol; 2017 Jan; 93(1):15-25. PubMed ID: 27925276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cryptochromes: blue light receptors for plants and animals.
    Cashmore AR; Jarillo JA; Wu YJ; Liu D
    Science; 1999 Apr; 284(5415):760-5. PubMed ID: 10221900
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.