These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

402 related articles for article (PubMed ID: 36258068)

  • 1. Iron Homeostasis in Pseudomonas aeruginosa: Targeting Iron Acquisition and Storage as an Antimicrobial Strategy.
    Llamas MA; Sánchez-Jiménez A
    Adv Exp Med Biol; 2022; 1386():29-68. PubMed ID: 36258068
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phenotypic Adaption of
    Perraud Q; Cantero P; Roche B; Gasser V; Normant VP; Kuhn L; Hammann P; Mislin GLA; Ehret-Sabatier L; Schalk IJ
    Mol Cell Proteomics; 2020 Apr; 19(4):589-607. PubMed ID: 32024770
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pseudomonas aeruginosa and its multiple strategies to access iron.
    Schalk IJ; Perraud Q
    Environ Microbiol; 2023 Apr; 25(4):811-831. PubMed ID: 36571575
    [TBL] [Abstract][Full Text] [Related]  

  • 4.
    Kang D; Xu Q; Kirienko NV
    Microbiol Spectr; 2024 Mar; 12(3):e0369323. PubMed ID: 38311809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ferric Uptake Regulator Fur Is Conditionally Essential in Pseudomonas aeruginosa.
    Pasqua M; Visaggio D; Lo Sciuto A; Genah S; Banin E; Visca P; Imperi F
    J Bacteriol; 2017 Nov; 199(22):. PubMed ID: 28847923
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pyoverdine, a siderophore from Pseudomonas aeruginosa, translocates into C. elegans, removes iron, and activates a distinct host response.
    Kang D; Kirienko DR; Webster P; Fisher AL; Kirienko NV
    Virulence; 2018 Dec; 9(1):804-817. PubMed ID: 29532717
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Novel Approach To Identify Inhibitors of Iron Acquisition Systems of Pseudomonas aeruginosa.
    Kannon M; Nebane NM; Ruiz P; McKellip S; Vinson PN; Mitra A
    Microbiol Spectr; 2022 Oct; 10(5):e0243722. PubMed ID: 36098531
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The heme-responsive PrrH sRNA regulates
    Hoang T-M; Huang W; Gans J; Weiner J; Nowak E; Barbier M; Wilks A; Kane MA; Oglesby AG
    mSphere; 2023 Oct; 8(5):e0039223. PubMed ID: 37800921
    [No Abstract]   [Full Text] [Related]  

  • 9. Mechanisms of iron homeostasis in Pseudomonas aeruginosa and emerging therapeutics directed to disrupt this vital process.
    Sánchez-Jiménez A; Marcos-Torres FJ; Llamas MA
    Microb Biotechnol; 2023 Jul; 16(7):1475-1491. PubMed ID: 36857468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pseudomonas aeruginosa adapts its iron uptake strategies in function of the type of infections.
    Cornelis P; Dingemans J
    Front Cell Infect Microbiol; 2013; 3():75. PubMed ID: 24294593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How the Presence of Hemin Affects the Expression of the Different Iron Uptake Pathways in
    Normant V; Kuhn L; Munier M; Hammann P; Mislin GLA; Schalk IJ
    ACS Infect Dis; 2022 Jan; 8(1):183-196. PubMed ID: 34878758
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Opportunistic use of catecholamine neurotransmitters as siderophores to access iron by Pseudomonas aeruginosa.
    Perraud Q; Kuhn L; Fritsch S; Graulier G; Gasser V; Normant V; Hammann P; Schalk IJ
    Environ Microbiol; 2022 Feb; 24(2):878-893. PubMed ID: 33350053
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of Iron Uptake Systems in Pseudomonas aeruginosa Virulence and Airway Infection.
    Minandri F; Imperi F; Frangipani E; Bonchi C; Visaggio D; Facchini M; Pasquali P; Bragonzi A; Visca P
    Infect Immun; 2016 Aug; 84(8):2324-2335. PubMed ID: 27271740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Within-host evolution of Pseudomonas aeruginosa reveals adaptation toward iron acquisition from hemoglobin.
    Marvig RL; Damkiær S; Khademi SM; Markussen TM; Molin S; Jelsbak L
    mBio; 2014 May; 5(3):e00966-14. PubMed ID: 24803516
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plant-Derived Catechols Are Substrates of TonB-Dependent Transporters and Sensitize Pseudomonas aeruginosa to Siderophore-Drug Conjugates.
    Luscher A; Gasser V; Bumann D; Mislin GLA; Schalk IJ; Köhler T
    mBio; 2022 Aug; 13(4):e0149822. PubMed ID: 35770947
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pseudomonas aeruginosa virulence attenuation by inhibiting siderophore functions.
    Jeong GJ; Khan F; Khan S; Tabassum N; Mehta S; Kim YM
    Appl Microbiol Biotechnol; 2023 Feb; 107(4):1019-1038. PubMed ID: 36633626
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Roles of Pseudomonas aeruginosa siderophores in interaction with prokaryotic and eukaryotic organisms.
    Jeong GJ; Khan F; Tabassum N; Jo DM; Jung WK; Kim YM
    Res Microbiol; 2024; 175(7):104211. PubMed ID: 38734157
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemistry and biology of pyoverdines, Pseudomonas primary siderophores.
    Cézard C; Farvacques N; Sonnet P
    Curr Med Chem; 2015; 22(2):165-86. PubMed ID: 25312210
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Illuminating Siderophore Transporter Functionality with Thiopeptide Antibiotics.
    Dolan SK
    mBio; 2023 Apr; 14(2):e0332622. PubMed ID: 36946760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extracellular haem utilization by the opportunistic pathogen Pseudomonas aeruginosa and its role in virulence and pathogenesis.
    Mouriño S; Wilks A
    Adv Microb Physiol; 2021; 79():89-132. PubMed ID: 34836613
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.